Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq2 | ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5072 | . . . . 5 ⊢ (𝑅 = 𝑇 → (𝑥𝑅𝑦 ↔ 𝑥𝑇𝑦)) | |
2 | 1 | bibi1d 343 | . . . 4 ⊢ (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
3 | 2 | 2ralbidv 3122 | . . 3 ⊢ (𝑅 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 3 | anbi2d 628 | . 2 ⊢ (𝑅 = 𝑇 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 6427 | . 2 ⊢ (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∀wral 3063 class class class wbr 5070 –1-1-onto→wf1o 6417 ‘cfv 6418 Isom wiso 6419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 df-ral 3068 df-br 5071 df-isom 6427 |
This theorem is referenced by: leiso 14101 gtiso 30935 rrx2plordisom 45957 |
Copyright terms: Public domain | W3C validator |