| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Ref | Expression |
|---|---|
| isoeq2 | ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 5145 | . . . . 5 ⊢ (𝑅 = 𝑇 → (𝑥𝑅𝑦 ↔ 𝑥𝑇𝑦)) | |
| 2 | 1 | bibi1d 343 | . . . 4 ⊢ (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| 3 | 2 | 2ralbidv 3221 | . . 3 ⊢ (𝑅 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
| 4 | 3 | anbi2d 630 | . 2 ⊢ (𝑅 = 𝑇 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
| 5 | df-isom 6570 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 6 | df-isom 6570 | . 2 ⊢ (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3061 class class class wbr 5143 –1-1-onto→wf1o 6560 ‘cfv 6561 Isom wiso 6562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 df-ral 3062 df-br 5144 df-isom 6570 |
| This theorem is referenced by: leiso 14498 gtiso 32710 rrx2plordisom 48644 |
| Copyright terms: Public domain | W3C validator |