Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq3 Structured version   Visualization version   GIF version

Theorem isoeq3 7066
 Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq3 (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))

Proof of Theorem isoeq3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq 5065 . . . . 5 (𝑆 = 𝑇 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑥)𝑇(𝐻𝑦)))
21bibi2d 344 . . . 4 (𝑆 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
322ralbidv 3204 . . 3 (𝑆 = 𝑇 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
43anbi2d 628 . 2 (𝑆 = 𝑇 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦)))))
5 df-isom 6363 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
6 df-isom 6363 . 2 (𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑇(𝐻𝑦))))
74, 5, 63bitr4g 315 1 (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1530  ∀wral 3143   class class class wbr 5063  –1-1-onto→wf1o 6353  ‘cfv 6354   Isom wiso 6355 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774  df-cleq 2819  df-clel 2898  df-ral 3148  df-br 5064  df-isom 6363 This theorem is referenced by:  fnwelem  7821  hartogslem1  9000  leiso  13812  gtiso  30368
 Copyright terms: Public domain W3C validator