Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoeq3 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq3 | ⊢ (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 5080 | . . . . 5 ⊢ (𝑆 = 𝑇 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦))) | |
2 | 1 | bibi2d 342 | . . . 4 ⊢ (𝑆 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) |
3 | 2 | 2ralbidv 3124 | . . 3 ⊢ (𝑆 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) |
4 | 3 | anbi2d 628 | . 2 ⊢ (𝑆 = 𝑇 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦))))) |
5 | df-isom 6439 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 6439 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑇(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 313 | 1 ⊢ (𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∀wral 3065 class class class wbr 5078 –1-1-onto→wf1o 6429 ‘cfv 6430 Isom wiso 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1786 df-cleq 2731 df-clel 2817 df-ral 3070 df-br 5079 df-isom 6439 |
This theorem is referenced by: fnwelem 7956 hartogslem1 9262 leiso 14154 gtiso 31012 |
Copyright terms: Public domain | W3C validator |