| Metamath
Proof Explorer Theorem List (p. 74 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | isof1o 7301 | An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | ||
| Theorem | isof1oidb 7302 | A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.) |
| ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom I , I (𝐴, 𝐵)) | ||
| Theorem | isof1oopb 7303 | A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.) |
| ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) | ||
| Theorem | isorel 7304 | An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻‘𝐶)𝑆(𝐻‘𝐷))) | ||
| Theorem | soisores 7305* | Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (((𝑅 Or 𝐵 ∧ 𝑆 Or 𝐶) ∧ (𝐹:𝐵⟶𝐶 ∧ 𝐴 ⊆ 𝐵)) → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹 “ 𝐴)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦)))) | ||
| Theorem | soisoi 7306* | Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| ⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) ∧ (𝐻:𝐴–onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | isoid 7307 | Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| ⊢ ( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴) | ||
| Theorem | isocnv 7308 | Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | ||
| Theorem | isocnv2 7309 | Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom ◡𝑅, ◡𝑆(𝐴, 𝐵)) | ||
| Theorem | isocnv3 7310 | Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.) |
| ⊢ 𝐶 = ((𝐴 × 𝐴) ∖ 𝑅) & ⊢ 𝐷 = ((𝐵 × 𝐵) ∖ 𝑆) ⇒ ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵)) | ||
| Theorem | isores2 7311 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵)) | ||
| Theorem | isores1 7312 | An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵)) | ||
| Theorem | isores3 7313 | Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾 ⊆ 𝐴 ∧ 𝑋 = (𝐻 “ 𝐾)) → (𝐻 ↾ 𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)) | ||
| Theorem | isotr 7314 | Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺 ∘ 𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶)) | ||
| Theorem | isomin 7315 | Isomorphisms preserve minimal elements. Note that (◡𝑅 “ {𝐷}) is Takeuti and Zaring's idiom for the initial segment {𝑥 ∣ 𝑥𝑅𝐷}. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶 ⊆ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐶 ∩ (◡𝑅 “ {𝐷})) = ∅ ↔ ((𝐻 “ 𝐶) ∩ (◡𝑆 “ {(𝐻‘𝐷)})) = ∅)) | ||
| Theorem | isoini 7316 | Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷 ∈ 𝐴) → (𝐻 “ (𝐴 ∩ (◡𝑅 “ {𝐷}))) = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝐷)}))) | ||
| Theorem | isoini2 7317 | Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.) |
| ⊢ 𝐶 = (𝐴 ∩ (◡𝑅 “ {𝑋})) & ⊢ 𝐷 = (𝐵 ∩ (◡𝑆 “ {(𝐻‘𝑋)})) ⇒ ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋 ∈ 𝐴) → (𝐻 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)) | ||
| Theorem | isofrlem 7318* | Lemma for isofr 7320. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
| Theorem | isoselem 7319* | Lemma for isose 7321. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝜑 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → (𝐻 “ 𝑥) ∈ V) ⇒ ⊢ (𝜑 → (𝑅 Se 𝐴 → 𝑆 Se 𝐵)) | ||
| Theorem | isofr 7320 | An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴 ↔ 𝑆 Fr 𝐵)) | ||
| Theorem | isose 7321 | An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) | ||
| Theorem | isofr2 7322 | A weak form of isofr 7320 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) | ||
| Theorem | isopolem 7323 | Lemma for isopo 7324. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵 → 𝑅 Po 𝐴)) | ||
| Theorem | isopo 7324 | An isomorphism preserves the property of being a partial order. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴 ↔ 𝑆 Po 𝐵)) | ||
| Theorem | isosolem 7325 | Lemma for isoso 7326. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵 → 𝑅 Or 𝐴)) | ||
| Theorem | isoso 7326 | An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴 ↔ 𝑆 Or 𝐵)) | ||
| Theorem | isowe 7327 | An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴 ↔ 𝑆 We 𝐵)) | ||
| Theorem | isowe2 7328* | A weak form of isowe 7327 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻 “ 𝑥) ∈ V) → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
| Theorem | f1oiso 7329* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.) |
| ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | f1oiso2 7330* | Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| ⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (◡𝐻‘𝑥)𝑅(◡𝐻‘𝑦))} ⇒ ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | ||
| Theorem | f1owe 7331* | Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥)𝑆(𝐹‘𝑦)} ⇒ ⊢ (𝐹:𝐴–1-1-onto→𝐵 → (𝑆 We 𝐵 → 𝑅 We 𝐴)) | ||
| Theorem | weniso 7332 | A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.) |
| ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴)) | ||
| Theorem | weisoeq 7333 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 7955. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
| Theorem | weisoeq2 7334 | Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 7956. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| ⊢ (((𝑆 We 𝐵 ∧ 𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺) | ||
| Theorem | knatar 7335* | The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice 𝒫 𝐴. (Contributed by Mario Carneiro, 11-Jun-2015.) |
| ⊢ 𝑋 = ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) | ||
| Theorem | fvresval 7336 | The value of a restricted function at a class is either the empty set or the value of the unrestricted function at that class. (Contributed by Scott Fenton, 4-Sep-2011.) |
| ⊢ (((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴) ∨ ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | ||
| Theorem | funeldmb 7337 | If ∅ is not part of the range of a function 𝐹, then 𝐴 is in the domain of 𝐹 iff (𝐹‘𝐴) ≠ ∅. (Contributed by Scott Fenton, 7-Dec-2021.) |
| ⊢ ((Fun 𝐹 ∧ ¬ ∅ ∈ ran 𝐹) → (𝐴 ∈ dom 𝐹 ↔ (𝐹‘𝐴) ≠ ∅)) | ||
| Theorem | eqfunresadj 7338 | Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑌 ∈ dom 𝐹 ∧ 𝑌 ∈ dom 𝐺 ∧ (𝐹‘𝑌) = (𝐺‘𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌}))) | ||
| Theorem | eqfunressuc 7339 | Law for equality of restriction to successors. This is primarily useful when 𝑋 is an ordinal, but it does not require that. (Contributed by Scott Fenton, 6-Dec-2021.) |
| ⊢ (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹 ↾ 𝑋) = (𝐺 ↾ 𝑋) ∧ (𝑋 ∈ dom 𝐹 ∧ 𝑋 ∈ dom 𝐺 ∧ (𝐹‘𝑋) = (𝐺‘𝑋))) → (𝐹 ↾ suc 𝑋) = (𝐺 ↾ suc 𝑋)) | ||
| Theorem | fnssintima 7340* | Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ⊆ ∩ (𝐹 “ 𝐵) ↔ ∀𝑥 ∈ 𝐵 𝐶 ⊆ (𝐹‘𝑥))) | ||
| Theorem | imaeqsexvOLD 7341* | Obsolete version of rexima 7215 as of 14-Aug-2025. Duplicate version of rexima 7215. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∃𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓)) | ||
| Theorem | imaeqsalvOLD 7342* | Obsolete version of ralima 7214 as of 14-Aug-2025. Duplicate version of ralima 7214. (Contributed by Scott Fenton, 27-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = (𝐹‘𝑦) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (∀𝑥 ∈ (𝐹 “ 𝐵)𝜑 ↔ ∀𝑦 ∈ 𝐵 𝜓)) | ||
| Theorem | fnimasnd 7343 | The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) | ||
| Theorem | canth 7344 | No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e., no function can map 𝐴 onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 9100. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 7345 for a counterexample. (Use nex 1800 if you want the form ¬ ∃𝑓𝑓:𝐴–onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ¬ 𝐹:𝐴–onto→𝒫 𝐴 | ||
| Theorem | ncanth 7345 |
Cantor's theorem fails for the universal class (which is not a set but a
proper class by vprc 5273). Specifically, the identity function maps
the
universe onto its power class. Compare canth 7344 that works for sets.
This failure comes from a limitation of the collection principle (which is necessary to avoid Russell's paradox ru 3754): 𝒫 V, being a class, cannot contain proper classes, so it is no larger than V, which is why the identity function "succeeds" in being surjective onto 𝒫 V (see pwv 4871). See also the remark in ru 3754 about NF, in which Cantor's theorem fails for sets that are "too large". This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.) (Proof shortened by BJ, 29-Dec-2023.) |
| ⊢ I :V–onto→𝒫 V | ||
| Syntax | crio 7346 | Extend class notation with restricted description binder. |
| class (℩𝑥 ∈ 𝐴 𝜑) | ||
| Definition | df-riota 7347 | Define restricted description binder. In case there is no unique 𝑥 such that (𝑥 ∈ 𝐴 ∧ 𝜑) holds, it evaluates to the empty set. See also comments for df-iota 6467. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.) |
| ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | ||
| Theorem | riotaeqdv 7348* | Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | riotabidv 7349* | Formula-building deduction for restricted iota. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | riotaeqbidv 7350* | Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐵 𝜒)) | ||
| Theorem | riotaex 7351 | Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V | ||
| Theorem | riotav 7352 | An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
| ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) | ||
| Theorem | riotauni 7353 | Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | nfriota1 7354* | The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥(℩𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | nfriotadw 7355* | Deduction version of nfriota 7359 with a disjoint variable condition, which contrary to nfriotad 7358 does not require ax-13 2371. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | cbvriotaw 7356* | Change bound variable in a restricted description binder. Version of cbvriota 7360 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by NM, 18-Mar-2013.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvriotavw 7357* | Change bound variable in a restricted description binder. Version of cbvriotav 7361 with a disjoint variable condition, which requires fewer axioms . (Contributed by NM, 18-Mar-2013.) (Revised by GG, 30-Sep-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | nfriotad 7358 | Deduction version of nfriota 7359. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker nfriotadw 7355 when possible. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜓)) | ||
| Theorem | nfriota 7359* | A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(℩𝑦 ∈ 𝐴 𝜑) | ||
| Theorem | cbvriota 7360* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvriotaw 7356 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | cbvriotav 7361* | Change bound variable in a restricted description binder. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker cbvriotavw 7357 when possible. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑦 ∈ 𝐴 𝜓) | ||
| Theorem | csbriota 7362* | Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(℩𝑦 ∈ 𝐵 𝜑) = (℩𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑) | ||
| Theorem | riotacl2 7363 | Membership law for "the unique element in 𝐴 such that 𝜑". (Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) | ||
| Theorem | riotacl 7364* | Closure of restricted iota. (Contributed by NM, 21-Aug-2011.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴) | ||
| Theorem | riotasbc 7365 | Substitution law for descriptions. Compare iotasbc 44415. (Contributed by NM, 23-Aug-2011.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → [(℩𝑥 ∈ 𝐴 𝜑) / 𝑥]𝜑) | ||
| Theorem | riotabidva 7366* | Equivalent wff's yield equal restricted class abstractions (deduction form). (rabbidva 3415 analog.) (Contributed by NM, 17-Jan-2012.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥 ∈ 𝐴 𝜒)) | ||
| Theorem | riotabiia 7367 | Equivalent wff's yield equal restricted iotas (inference form). (rabbiia 3412 analog.) (Contributed by NM, 16-Jan-2012.) |
| ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐴 𝜓) | ||
| Theorem | riota1 7368* | Property of restricted iota. Compare iota1 6491. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝑥)) | ||
| Theorem | riota1a 7369 | Property of iota. (Contributed by NM, 23-Aug-2011.) |
| ⊢ ((𝑥 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜑 ↔ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = 𝑥)) | ||
| Theorem | riota2df 7370* | A deduction version of riota2f 7371. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 = 𝐵) → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (𝜒 ↔ (℩𝑥 ∈ 𝐴 𝜓) = 𝐵)) | ||
| Theorem | riota2f 7371* | This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
| Theorem | riota2 7372* | This theorem shows a condition that allows to represent a descriptor with a class expression 𝐵. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 10-Dec-2016.) |
| ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ ∃!𝑥 ∈ 𝐴 𝜑) → (𝜓 ↔ (℩𝑥 ∈ 𝐴 𝜑) = 𝐵)) | ||
| Theorem | riotaeqimp 7373* | If two restricted iota descriptors for an equality are equal, then the terms of the equality are equal. (Contributed by AV, 6-Dec-2020.) |
| ⊢ 𝐼 = (℩𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ 𝐽 = (℩𝑎 ∈ 𝑉 𝑌 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑋 = 𝐴) & ⊢ (𝜑 → ∃!𝑎 ∈ 𝑉 𝑌 = 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝐼 = 𝐽) → 𝑋 = 𝑌) | ||
| Theorem | riotaprop 7374* | Properties of a restricted definite description operator. (Contributed by NM, 23-Nov-2013.) |
| ⊢ Ⅎ𝑥𝜓 & ⊢ 𝐵 = (℩𝑥 ∈ 𝐴 𝜑) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (𝐵 ∈ 𝐴 ∧ 𝜓)) | ||
| Theorem | riota5f 7375* | A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐵) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
| Theorem | riota5 7376* | A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) | ||
| Theorem | riotass2 7377* | Restriction of a unique element to a smaller class. (Contributed by NM, 21-Aug-2011.) (Revised by NM, 22-Mar-2013.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
| Theorem | riotass 7378* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | moriotass 7379* | Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥 ∈ 𝐵 𝜑) → (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑)) | ||
| Theorem | snriota 7380 | A restricted class abstraction with a unique member can be expressed as a singleton. (Contributed by NM, 30-May-2006.) |
| ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {(℩𝑥 ∈ 𝐴 𝜑)}) | ||
| Theorem | riotaxfrd 7381* | Change the variable 𝑥 in the expression for "the unique 𝑥 such that 𝜓 " to another variable 𝑦 contained in expression 𝐵. Use reuhypd 5377 to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑦𝐶 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ (℩𝑦 ∈ 𝐴 𝜒) ∈ 𝐴) → 𝐶 ∈ 𝐴) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = (℩𝑦 ∈ 𝐴 𝜒) → 𝐵 = 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐴 𝑥 = 𝐵) ⇒ ⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → (℩𝑥 ∈ 𝐴 𝜓) = 𝐶) | ||
| Theorem | eusvobj2 7382* | Specify the same property in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | eusvobj1 7383* | Specify the same object in two ways when class 𝐵(𝑦) is single-valued. (Contributed by NM, 1-Nov-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ 𝐵 ∈ V ⇒ ⊢ (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → (℩𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) = (℩𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) | ||
| Theorem | f1ofveu 7384* | There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) | ||
| Theorem | f1ocnvfv3 7385* | Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) | ||
| Theorem | riotaund 7386* | Restricted iota equals the empty set when not meaningful. (Contributed by NM, 16-Jan-2012.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 13-Sep-2018.) |
| ⊢ (¬ ∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∅) | ||
| Theorem | riotassuni 7387* | The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) |
| ⊢ (℩𝑥 ∈ 𝐴 𝜑) ⊆ (𝒫 ∪ 𝐴 ∪ ∪ 𝐴) | ||
| Theorem | riotaclb 7388* | Bidirectional closure of restricted iota when domain is not empty. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.) (Revised by NM, 13-Sep-2018.) |
| ⊢ (¬ ∅ ∈ 𝐴 → (∃!𝑥 ∈ 𝐴 𝜑 ↔ (℩𝑥 ∈ 𝐴 𝜑) ∈ 𝐴)) | ||
| Theorem | riotarab 7389* | Restricted iota of a restricted abstraction. (Contributed by Scott Fenton, 8-Aug-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (℩𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜓}𝜒) = (℩𝑥 ∈ 𝐴 (𝜑 ∧ 𝜒)) | ||
| Syntax | co 7390 | Extend class notation to include the value of an operation 𝐹 (such as +) for two arguments 𝐴 and 𝐵. Note that the syntax is simply three class symbols in a row surrounded by parentheses. Since operation values are the only possible class expressions consisting of three class expressions in a row surrounded by parentheses, the syntax is unambiguous. (For an example of how syntax could become ambiguous if we are not careful, see the comment in cneg 11413.) |
| class (𝐴𝐹𝐵) | ||
| Syntax | coprab 7391 | Extend class notation to include class abstraction (class builder) of nested ordered pairs. |
| class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} | ||
| Syntax | cmpo 7392 | Extend the definition of a class to include maps-to notation for defining an operation via a rule. |
| class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | ||
| Definition | df-ov 7393 | Define the value of an operation. Definition of operation value in [Enderton] p. 79. Note that the syntax is simply three class expressions in a row bracketed by parentheses. There are no restrictions of any kind on what those class expressions may be, although only certain kinds of class expressions - a binary operation 𝐹 and its arguments 𝐴 and 𝐵- will be useful for proving meaningful theorems. For example, if class 𝐹 is the operation + and arguments 𝐴 and 𝐵 are 3 and 2, the expression (3 + 2) can be proved to equal 5 (see 3p2e5 12339). This definition is well-defined, although not very meaningful, when classes 𝐴 and/or 𝐵 are proper classes (i.e. are not sets); see ovprc1 7429 and ovprc2 7430. On the other hand, we often find uses for this definition when 𝐹 is a proper class, such as +o in oav 8478. 𝐹 is normally equal to a class of nested ordered pairs of the form defined by df-oprab 7394. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | ||
| Definition | df-oprab 7394* | Define the class abstraction (class builder) of a collection of nested ordered pairs (for use in defining operations). This is a special case of Definition 4.16 of [TakeutiZaring] p. 14. Normally 𝑥, 𝑦, and 𝑧 are distinct, although the definition doesn't strictly require it. See df-ov 7393 for the value of an operation. The brace notation is called "class abstraction" by Quine; it is also called a "class builder" in the literature. The value of an operation given by a class abstraction is given by ovmpo 7552. (Contributed by NM, 12-Mar-1995.) |
| ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | ||
| Definition | df-mpo 7395* | Define maps-to notation for defining an operation via a rule. Read as "the operation defined by the map from 𝑥, 𝑦 (in 𝐴 × 𝐵) to 𝐶(𝑥, 𝑦)". An extension of df-mpt 5192 for two arguments. (Contributed by NM, 17-Feb-2008.) |
| ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | ||
| Theorem | oveq 7396 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐹 = 𝐺 → (𝐴𝐹𝐵) = (𝐴𝐺𝐵)) | ||
| Theorem | oveq1 7397 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝐴𝐹𝐶) = (𝐵𝐹𝐶)) | ||
| Theorem | oveq2 7398 | Equality theorem for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ (𝐴 = 𝐵 → (𝐶𝐹𝐴) = (𝐶𝐹𝐵)) | ||
| Theorem | oveq12 7399 | Equality theorem for operation value. (Contributed by NM, 16-Jul-1995.) |
| ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝐹𝐶) = (𝐵𝐹𝐷)) | ||
| Theorem | oveq1i 7400 | Equality inference for operation value. (Contributed by NM, 28-Feb-1995.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴𝐹𝐶) = (𝐵𝐹𝐶) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |