Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordisom Structured version   Visualization version   GIF version

Theorem rrx2plordisom 48823
Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
rrx2plordisom.f 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
rrx2plordisom.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
Assertion
Ref Expression
rrx2plordisom 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordisom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2plord2.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
2 eqid 2731 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
31, 2rrx2xpref1o 48818 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
4 elxpi 5636 . . . . . 6 (𝑎 ∈ (ℝ × ℝ) → ∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
5 elxpi 5636 . . . . . 6 (𝑏 ∈ (ℝ × ℝ) → ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)))
6 df-br 5090 . . . . . . . . . . . . 13 (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))})
7 opelxpi 5651 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
87adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
9 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
109adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
118, 10mpbird 257 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → 𝑎 ∈ (ℝ × ℝ))
12 opelxpi 5651 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
14 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1613, 15mpbird 257 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → 𝑏 ∈ (ℝ × ℝ))
17 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (1st𝑥) = (1st𝑎))
18 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (1st𝑦) = (1st𝑏))
1917, 18breqan12d 5105 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) < (1st𝑦) ↔ (1st𝑎) < (1st𝑏)))
2017, 18eqeqan12d 2745 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) = (1st𝑦) ↔ (1st𝑎) = (1st𝑏)))
21 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (2nd𝑥) = (2nd𝑎))
22 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (2nd𝑦) = (2nd𝑏))
2321, 22breqan12d 5105 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((2nd𝑥) < (2nd𝑦) ↔ (2nd𝑎) < (2nd𝑏)))
2420, 23anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))))
2519, 24orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))) ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2625opelopab2a 5473 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2711, 16, 26syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
286, 27bitrid 283 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
29 1ne2 12328 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1ex 11108 . . . . . . . . . . . . . . . . 17 1 ∈ V
31 vex 3440 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
3230, 31fvpr1 7126 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
3329, 32mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
34 vex 3440 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
3530, 34fvpr1 7126 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3629, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3733, 36breq12d 5102 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 < 𝑒))
3833, 36eqeq12d 2747 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 = 𝑒))
39 2ex 12202 . . . . . . . . . . . . . . . . . 18 2 ∈ V
40 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑑 ∈ V
4139, 40fvpr2 7127 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
4229, 41mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
43 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
4439, 43fvpr2 7127 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4529, 44mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4642, 45breq12d 5102 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) ↔ 𝑑 < 𝑓))
4738, 46anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
4837, 47orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
49 eqid 2731 . . . . . . . . . . . . . . . 16 {1, 2} = {1, 2}
5049, 1prelrrx2 48813 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5150adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5249, 1prelrrx2 48813 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
5352adantl 481 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
54 rrx2plord.o . . . . . . . . . . . . . . 15 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
5554rrx2plord 48820 . . . . . . . . . . . . . 14 (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅 ∧ {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5651, 53, 55syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5731, 40op1std 7931 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (1st𝑎) = 𝑐)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (1st𝑎) = 𝑐)
5934, 43op1std 7931 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (1st𝑏) = 𝑒)
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (1st𝑏) = 𝑒)
6158, 60breqan12d 5105 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) < (1st𝑏) ↔ 𝑐 < 𝑒))
6258, 60eqeqan12d 2745 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) = (1st𝑏) ↔ 𝑐 = 𝑒))
6331, 40op2ndd 7932 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑐, 𝑑⟩ → (2nd𝑎) = 𝑑)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (2nd𝑎) = 𝑑)
6534, 43op2ndd 7932 . . . . . . . . . . . . . . . . 17 (𝑏 = ⟨𝑒, 𝑓⟩ → (2nd𝑏) = 𝑓)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (2nd𝑏) = 𝑓)
6764, 66breqan12d 5105 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((2nd𝑎) < (2nd𝑏) ↔ 𝑑 < 𝑓))
6862, 67anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
6961, 68orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
7048, 56, 693bitr4rd 312 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ {⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩}))
71 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩))
72 df-ov 7349 . . . . . . . . . . . . . . . 16 (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩)
7371, 72eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑))
74 eqidd 2732 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
75 opeq2 4823 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
7675adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
77 opeq2 4823 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7877adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7976, 78preq12d 4691 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑑) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) ∧ (𝑥 = 𝑐𝑦 = 𝑑)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
81 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑐 ∈ ℝ)
82 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
83 prex 5373 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V
8483a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V)
8574, 80, 81, 82, 84ovmpod 7498 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8673, 85sylan9eq 2786 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8786eqcomd 2737 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎))
88 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩))
89 df-ov 7349 . . . . . . . . . . . . . . . 16 (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩)
9088, 89eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓))
91 eqidd 2732 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
92 opeq2 4823 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑒 → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
9392adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
94 opeq2 4823 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑓 → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9693, 95preq12d 4691 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑒𝑦 = 𝑓) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) ∧ (𝑥 = 𝑒𝑦 = 𝑓)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
98 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑒 ∈ ℝ)
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑓 ∈ ℝ)
100 prex 5373 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V
101100a1i 11 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V)
10291, 97, 98, 99, 101ovmpod 7498 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
10390, 102sylan9eq 2786 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
104103eqcomd 2737 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
10587, 104breqan12d 5105 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
10628, 70, 1053bitrd 305 . . . . . . . . . . 11 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
107106expcom 413 . . . . . . . . . 10 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
108107exlimivv 1933 . . . . . . . . 9 (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
109108com12 32 . . . . . . . 8 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
110109exlimivv 1933 . . . . . . 7 (∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
111110imp 406 . . . . . 6 ((∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
1124, 5, 111syl2an 596 . . . . 5 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
113112rgen2 3172 . . . 4 𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
114 df-isom 6490 . . . 4 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅 ∧ ∀𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
1153, 113, 114mpbir2an 711 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
116 rrx2plordisom.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
117 isoeq2 7252 . . . 4 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)))
118116, 117ax-mp 5 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅))
119115, 118mpbir 231 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
120 rrx2plordisom.f . . 3 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
121 isoeq1 7251 . . 3 (𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)))
122120, 121ax-mp 5 . 2 (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅))
123119, 122mpbir 231 1 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  Vcvv 3436  {cpr 4575  cop 4579   class class class wbr 5089  {copab 5151   × cxp 5612  1-1-ontowf1o 6480  cfv 6481   Isom wiso 6482  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  m cmap 8750  cr 11005  1c1 11007   < clt 11146  2c2 12180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-2 12188
This theorem is referenced by:  rrx2plordso  48824
  Copyright terms: Public domain W3C validator