Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordisom Structured version   Visualization version   GIF version

Theorem rrx2plordisom 46021
Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
rrx2plordisom.f 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
rrx2plordisom.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
Assertion
Ref Expression
rrx2plordisom 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordisom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2plord2.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
2 eqid 2739 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
31, 2rrx2xpref1o 46016 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
4 elxpi 5610 . . . . . 6 (𝑎 ∈ (ℝ × ℝ) → ∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
5 elxpi 5610 . . . . . 6 (𝑏 ∈ (ℝ × ℝ) → ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)))
6 df-br 5079 . . . . . . . . . . . . 13 (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))})
7 opelxpi 5625 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
87adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
9 eleq1 2827 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
109adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
118, 10mpbird 256 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → 𝑎 ∈ (ℝ × ℝ))
12 opelxpi 5625 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
14 eleq1 2827 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1613, 15mpbird 256 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → 𝑏 ∈ (ℝ × ℝ))
17 fveq2 6768 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (1st𝑥) = (1st𝑎))
18 fveq2 6768 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (1st𝑦) = (1st𝑏))
1917, 18breqan12d 5094 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) < (1st𝑦) ↔ (1st𝑎) < (1st𝑏)))
2017, 18eqeqan12d 2753 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) = (1st𝑦) ↔ (1st𝑎) = (1st𝑏)))
21 fveq2 6768 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (2nd𝑥) = (2nd𝑎))
22 fveq2 6768 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (2nd𝑦) = (2nd𝑏))
2321, 22breqan12d 5094 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((2nd𝑥) < (2nd𝑦) ↔ (2nd𝑎) < (2nd𝑏)))
2420, 23anbi12d 630 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))))
2519, 24orbi12d 915 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))) ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2625opelopab2a 5449 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2711, 16, 26syl2an 595 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
286, 27syl5bb 282 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
29 1ne2 12164 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1ex 10955 . . . . . . . . . . . . . . . . 17 1 ∈ V
31 vex 3434 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
3230, 31fvpr1 7059 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
3329, 32mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
34 vex 3434 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
3530, 34fvpr1 7059 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3629, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3733, 36breq12d 5091 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 < 𝑒))
3833, 36eqeq12d 2755 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 = 𝑒))
39 2ex 12033 . . . . . . . . . . . . . . . . . 18 2 ∈ V
40 vex 3434 . . . . . . . . . . . . . . . . . 18 𝑑 ∈ V
4139, 40fvpr2 7061 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
4229, 41mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
43 vex 3434 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
4439, 43fvpr2 7061 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4529, 44mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4642, 45breq12d 5091 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) ↔ 𝑑 < 𝑓))
4738, 46anbi12d 630 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
4837, 47orbi12d 915 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
49 eqid 2739 . . . . . . . . . . . . . . . 16 {1, 2} = {1, 2}
5049, 1prelrrx2 46011 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5150adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5249, 1prelrrx2 46011 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
5352adantl 481 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
54 rrx2plord.o . . . . . . . . . . . . . . 15 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
5554rrx2plord 46018 . . . . . . . . . . . . . 14 (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅 ∧ {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5651, 53, 55syl2an 595 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5731, 40op1std 7827 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (1st𝑎) = 𝑐)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (1st𝑎) = 𝑐)
5934, 43op1std 7827 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (1st𝑏) = 𝑒)
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (1st𝑏) = 𝑒)
6158, 60breqan12d 5094 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) < (1st𝑏) ↔ 𝑐 < 𝑒))
6258, 60eqeqan12d 2753 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) = (1st𝑏) ↔ 𝑐 = 𝑒))
6331, 40op2ndd 7828 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑐, 𝑑⟩ → (2nd𝑎) = 𝑑)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (2nd𝑎) = 𝑑)
6534, 43op2ndd 7828 . . . . . . . . . . . . . . . . 17 (𝑏 = ⟨𝑒, 𝑓⟩ → (2nd𝑏) = 𝑓)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (2nd𝑏) = 𝑓)
6764, 66breqan12d 5094 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((2nd𝑎) < (2nd𝑏) ↔ 𝑑 < 𝑓))
6862, 67anbi12d 630 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
6961, 68orbi12d 915 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
7048, 56, 693bitr4rd 311 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ {⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩}))
71 fveq2 6768 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩))
72 df-ov 7271 . . . . . . . . . . . . . . . 16 (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩)
7371, 72eqtr4di 2797 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑))
74 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
75 opeq2 4810 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
7675adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
77 opeq2 4810 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7877adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7976, 78preq12d 4682 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑑) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) ∧ (𝑥 = 𝑐𝑦 = 𝑑)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
81 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑐 ∈ ℝ)
82 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
83 prex 5358 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V
8483a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V)
8574, 80, 81, 82, 84ovmpod 7416 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8673, 85sylan9eq 2799 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8786eqcomd 2745 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎))
88 fveq2 6768 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩))
89 df-ov 7271 . . . . . . . . . . . . . . . 16 (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩)
9088, 89eqtr4di 2797 . . . . . . . . . . . . . . 15 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓))
91 eqidd 2740 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
92 opeq2 4810 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑒 → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
9392adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
94 opeq2 4810 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑓 → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9693, 95preq12d 4682 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑒𝑦 = 𝑓) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) ∧ (𝑥 = 𝑒𝑦 = 𝑓)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
98 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑒 ∈ ℝ)
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑓 ∈ ℝ)
100 prex 5358 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V
101100a1i 11 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V)
10291, 97, 98, 99, 101ovmpod 7416 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
10390, 102sylan9eq 2799 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
104103eqcomd 2745 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
10587, 104breqan12d 5094 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
10628, 70, 1053bitrd 304 . . . . . . . . . . 11 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
107106expcom 413 . . . . . . . . . 10 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
108107exlimivv 1938 . . . . . . . . 9 (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
109108com12 32 . . . . . . . 8 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
110109exlimivv 1938 . . . . . . 7 (∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
111110imp 406 . . . . . 6 ((∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
1124, 5, 111syl2an 595 . . . . 5 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
113112rgen2 3128 . . . 4 𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
114 df-isom 6439 . . . 4 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅 ∧ ∀𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
1153, 113, 114mpbir2an 707 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
116 rrx2plordisom.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
117 isoeq2 7182 . . . 4 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)))
118116, 117ax-mp 5 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅))
119115, 118mpbir 230 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
120 rrx2plordisom.f . . 3 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
121 isoeq1 7181 . . 3 (𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)))
122120, 121ax-mp 5 . 2 (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅))
123119, 122mpbir 230 1 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1541  wex 1785  wcel 2109  wne 2944  wral 3065  Vcvv 3430  {cpr 4568  cop 4572   class class class wbr 5078  {copab 5140   × cxp 5586  1-1-ontowf1o 6429  cfv 6430   Isom wiso 6431  (class class class)co 7268  cmpo 7270  1st c1st 7815  2nd c2nd 7816  m cmap 8589  cr 10854  1c1 10856   < clt 10993  2c2 12011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-2 12019
This theorem is referenced by:  rrx2plordso  46022
  Copyright terms: Public domain W3C validator