Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordisom Structured version   Visualization version   GIF version

Theorem rrx2plordisom 48147
Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
rrx2plordisom.f 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
rrx2plordisom.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
Assertion
Ref Expression
rrx2plordisom 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordisom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2plord2.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
2 eqid 2726 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
31, 2rrx2xpref1o 48142 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
4 elxpi 5696 . . . . . 6 (𝑎 ∈ (ℝ × ℝ) → ∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
5 elxpi 5696 . . . . . 6 (𝑏 ∈ (ℝ × ℝ) → ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)))
6 df-br 5146 . . . . . . . . . . . . 13 (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))})
7 opelxpi 5711 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
87adantl 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
9 eleq1 2814 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
109adantr 479 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
118, 10mpbird 256 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → 𝑎 ∈ (ℝ × ℝ))
12 opelxpi 5711 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
1312adantl 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
14 eleq1 2814 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1514adantr 479 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1613, 15mpbird 256 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → 𝑏 ∈ (ℝ × ℝ))
17 fveq2 6893 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (1st𝑥) = (1st𝑎))
18 fveq2 6893 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (1st𝑦) = (1st𝑏))
1917, 18breqan12d 5161 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) < (1st𝑦) ↔ (1st𝑎) < (1st𝑏)))
2017, 18eqeqan12d 2740 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) = (1st𝑦) ↔ (1st𝑎) = (1st𝑏)))
21 fveq2 6893 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (2nd𝑥) = (2nd𝑎))
22 fveq2 6893 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (2nd𝑦) = (2nd𝑏))
2321, 22breqan12d 5161 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((2nd𝑥) < (2nd𝑦) ↔ (2nd𝑎) < (2nd𝑏)))
2420, 23anbi12d 630 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))))
2519, 24orbi12d 916 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))) ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2625opelopab2a 5533 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2711, 16, 26syl2an 594 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
286, 27bitrid 282 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
29 1ne2 12466 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1ex 11251 . . . . . . . . . . . . . . . . 17 1 ∈ V
31 vex 3466 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
3230, 31fvpr1 7199 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
3329, 32mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
34 vex 3466 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
3530, 34fvpr1 7199 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3629, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3733, 36breq12d 5158 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 < 𝑒))
3833, 36eqeq12d 2742 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 = 𝑒))
39 2ex 12335 . . . . . . . . . . . . . . . . . 18 2 ∈ V
40 vex 3466 . . . . . . . . . . . . . . . . . 18 𝑑 ∈ V
4139, 40fvpr2 7201 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
4229, 41mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
43 vex 3466 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
4439, 43fvpr2 7201 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4529, 44mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4642, 45breq12d 5158 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) ↔ 𝑑 < 𝑓))
4738, 46anbi12d 630 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
4837, 47orbi12d 916 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
49 eqid 2726 . . . . . . . . . . . . . . . 16 {1, 2} = {1, 2}
5049, 1prelrrx2 48137 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5150adantl 480 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5249, 1prelrrx2 48137 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
5352adantl 480 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
54 rrx2plord.o . . . . . . . . . . . . . . 15 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
5554rrx2plord 48144 . . . . . . . . . . . . . 14 (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅 ∧ {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5651, 53, 55syl2an 594 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5731, 40op1std 8005 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (1st𝑎) = 𝑐)
5857adantr 479 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (1st𝑎) = 𝑐)
5934, 43op1std 8005 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (1st𝑏) = 𝑒)
6059adantr 479 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (1st𝑏) = 𝑒)
6158, 60breqan12d 5161 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) < (1st𝑏) ↔ 𝑐 < 𝑒))
6258, 60eqeqan12d 2740 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) = (1st𝑏) ↔ 𝑐 = 𝑒))
6331, 40op2ndd 8006 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑐, 𝑑⟩ → (2nd𝑎) = 𝑑)
6463adantr 479 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (2nd𝑎) = 𝑑)
6534, 43op2ndd 8006 . . . . . . . . . . . . . . . . 17 (𝑏 = ⟨𝑒, 𝑓⟩ → (2nd𝑏) = 𝑓)
6665adantr 479 . . . . . . . . . . . . . . . 16 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (2nd𝑏) = 𝑓)
6764, 66breqan12d 5161 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((2nd𝑎) < (2nd𝑏) ↔ 𝑑 < 𝑓))
6862, 67anbi12d 630 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
6961, 68orbi12d 916 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
7048, 56, 693bitr4rd 311 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ {⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩}))
71 fveq2 6893 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩))
72 df-ov 7419 . . . . . . . . . . . . . . . 16 (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩)
7371, 72eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑))
74 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
75 opeq2 4872 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
7675adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
77 opeq2 4872 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7877adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7976, 78preq12d 4740 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑑) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8079adantl 480 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) ∧ (𝑥 = 𝑐𝑦 = 𝑑)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
81 simpl 481 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑐 ∈ ℝ)
82 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
83 prex 5430 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V
8483a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V)
8574, 80, 81, 82, 84ovmpod 7570 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8673, 85sylan9eq 2786 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8786eqcomd 2732 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎))
88 fveq2 6893 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩))
89 df-ov 7419 . . . . . . . . . . . . . . . 16 (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩)
9088, 89eqtr4di 2784 . . . . . . . . . . . . . . 15 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓))
91 eqidd 2727 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
92 opeq2 4872 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑒 → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
9392adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
94 opeq2 4872 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑓 → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9594adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9693, 95preq12d 4740 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑒𝑦 = 𝑓) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
9796adantl 480 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) ∧ (𝑥 = 𝑒𝑦 = 𝑓)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
98 simpl 481 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑒 ∈ ℝ)
99 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑓 ∈ ℝ)
100 prex 5430 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V
101100a1i 11 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V)
10291, 97, 98, 99, 101ovmpod 7570 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
10390, 102sylan9eq 2786 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
104103eqcomd 2732 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
10587, 104breqan12d 5161 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
10628, 70, 1053bitrd 304 . . . . . . . . . . 11 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
107106expcom 412 . . . . . . . . . 10 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
108107exlimivv 1928 . . . . . . . . 9 (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
109108com12 32 . . . . . . . 8 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
110109exlimivv 1928 . . . . . . 7 (∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
111110imp 405 . . . . . 6 ((∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
1124, 5, 111syl2an 594 . . . . 5 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
113112rgen2 3188 . . . 4 𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
114 df-isom 6555 . . . 4 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅 ∧ ∀𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
1153, 113, 114mpbir2an 709 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
116 rrx2plordisom.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
117 isoeq2 7322 . . . 4 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)))
118116, 117ax-mp 5 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅))
119115, 118mpbir 230 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
120 rrx2plordisom.f . . 3 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
121 isoeq1 7321 . . 3 (𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)))
122120, 121ax-mp 5 . 2 (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅))
123119, 122mpbir 230 1 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  Vcvv 3462  {cpr 4625  cop 4629   class class class wbr 5145  {copab 5207   × cxp 5672  1-1-ontowf1o 6545  cfv 6546   Isom wiso 6547  (class class class)co 7416  cmpo 7418  1st c1st 7993  2nd c2nd 7994  m cmap 8847  cr 11148  1c1 11150   < clt 11289  2c2 12313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-2 12321
This theorem is referenced by:  rrx2plordso  48148
  Copyright terms: Public domain W3C validator