Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordisom Structured version   Visualization version   GIF version

Theorem rrx2plordisom 48718
Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
rrx2plordisom.f 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
rrx2plordisom.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
Assertion
Ref Expression
rrx2plordisom 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordisom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2plord2.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
2 eqid 2729 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
31, 2rrx2xpref1o 48713 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
4 elxpi 5641 . . . . . 6 (𝑎 ∈ (ℝ × ℝ) → ∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
5 elxpi 5641 . . . . . 6 (𝑏 ∈ (ℝ × ℝ) → ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)))
6 df-br 5093 . . . . . . . . . . . . 13 (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))})
7 opelxpi 5656 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
87adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
9 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
109adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
118, 10mpbird 257 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → 𝑎 ∈ (ℝ × ℝ))
12 opelxpi 5656 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
14 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1613, 15mpbird 257 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → 𝑏 ∈ (ℝ × ℝ))
17 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (1st𝑥) = (1st𝑎))
18 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (1st𝑦) = (1st𝑏))
1917, 18breqan12d 5108 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) < (1st𝑦) ↔ (1st𝑎) < (1st𝑏)))
2017, 18eqeqan12d 2743 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) = (1st𝑦) ↔ (1st𝑎) = (1st𝑏)))
21 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (2nd𝑥) = (2nd𝑎))
22 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (2nd𝑦) = (2nd𝑏))
2321, 22breqan12d 5108 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((2nd𝑥) < (2nd𝑦) ↔ (2nd𝑎) < (2nd𝑏)))
2420, 23anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))))
2519, 24orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))) ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2625opelopab2a 5478 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2711, 16, 26syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
286, 27bitrid 283 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
29 1ne2 12331 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1ex 11111 . . . . . . . . . . . . . . . . 17 1 ∈ V
31 vex 3440 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
3230, 31fvpr1 7128 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
3329, 32mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
34 vex 3440 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
3530, 34fvpr1 7128 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3629, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3733, 36breq12d 5105 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 < 𝑒))
3833, 36eqeq12d 2745 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 = 𝑒))
39 2ex 12205 . . . . . . . . . . . . . . . . . 18 2 ∈ V
40 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑑 ∈ V
4139, 40fvpr2 7129 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
4229, 41mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
43 vex 3440 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
4439, 43fvpr2 7129 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4529, 44mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4642, 45breq12d 5105 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) ↔ 𝑑 < 𝑓))
4738, 46anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
4837, 47orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
49 eqid 2729 . . . . . . . . . . . . . . . 16 {1, 2} = {1, 2}
5049, 1prelrrx2 48708 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5150adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5249, 1prelrrx2 48708 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
5352adantl 481 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
54 rrx2plord.o . . . . . . . . . . . . . . 15 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
5554rrx2plord 48715 . . . . . . . . . . . . . 14 (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅 ∧ {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5651, 53, 55syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5731, 40op1std 7934 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (1st𝑎) = 𝑐)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (1st𝑎) = 𝑐)
5934, 43op1std 7934 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (1st𝑏) = 𝑒)
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (1st𝑏) = 𝑒)
6158, 60breqan12d 5108 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) < (1st𝑏) ↔ 𝑐 < 𝑒))
6258, 60eqeqan12d 2743 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) = (1st𝑏) ↔ 𝑐 = 𝑒))
6331, 40op2ndd 7935 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑐, 𝑑⟩ → (2nd𝑎) = 𝑑)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (2nd𝑎) = 𝑑)
6534, 43op2ndd 7935 . . . . . . . . . . . . . . . . 17 (𝑏 = ⟨𝑒, 𝑓⟩ → (2nd𝑏) = 𝑓)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (2nd𝑏) = 𝑓)
6764, 66breqan12d 5108 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((2nd𝑎) < (2nd𝑏) ↔ 𝑑 < 𝑓))
6862, 67anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
6961, 68orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
7048, 56, 693bitr4rd 312 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ {⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩}))
71 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩))
72 df-ov 7352 . . . . . . . . . . . . . . . 16 (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩)
7371, 72eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑))
74 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
75 opeq2 4825 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
7675adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
77 opeq2 4825 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7877adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7976, 78preq12d 4693 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑑) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) ∧ (𝑥 = 𝑐𝑦 = 𝑑)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
81 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑐 ∈ ℝ)
82 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
83 prex 5376 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V
8483a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V)
8574, 80, 81, 82, 84ovmpod 7501 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8673, 85sylan9eq 2784 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8786eqcomd 2735 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎))
88 fveq2 6822 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩))
89 df-ov 7352 . . . . . . . . . . . . . . . 16 (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩)
9088, 89eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓))
91 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
92 opeq2 4825 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑒 → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
9392adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
94 opeq2 4825 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑓 → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9693, 95preq12d 4693 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑒𝑦 = 𝑓) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) ∧ (𝑥 = 𝑒𝑦 = 𝑓)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
98 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑒 ∈ ℝ)
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑓 ∈ ℝ)
100 prex 5376 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V
101100a1i 11 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V)
10291, 97, 98, 99, 101ovmpod 7501 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
10390, 102sylan9eq 2784 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
104103eqcomd 2735 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
10587, 104breqan12d 5108 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
10628, 70, 1053bitrd 305 . . . . . . . . . . 11 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
107106expcom 413 . . . . . . . . . 10 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
108107exlimivv 1932 . . . . . . . . 9 (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
109108com12 32 . . . . . . . 8 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
110109exlimivv 1932 . . . . . . 7 (∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
111110imp 406 . . . . . 6 ((∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
1124, 5, 111syl2an 596 . . . . 5 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
113112rgen2 3169 . . . 4 𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
114 df-isom 6491 . . . 4 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅 ∧ ∀𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
1153, 113, 114mpbir2an 711 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
116 rrx2plordisom.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
117 isoeq2 7255 . . . 4 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)))
118116, 117ax-mp 5 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅))
119115, 118mpbir 231 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
120 rrx2plordisom.f . . 3 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
121 isoeq1 7254 . . 3 (𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)))
122120, 121ax-mp 5 . 2 (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅))
123119, 122mpbir 231 1 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3436  {cpr 4579  cop 4583   class class class wbr 5092  {copab 5154   × cxp 5617  1-1-ontowf1o 6481  cfv 6482   Isom wiso 6483  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  m cmap 8753  cr 11008  1c1 11010   < clt 11149  2c2 12183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-2 12191
This theorem is referenced by:  rrx2plordso  48719
  Copyright terms: Public domain W3C validator