Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plordisom Structured version   Visualization version   GIF version

Theorem rrx2plordisom 48705
Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
rrx2plordisom.f 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
rrx2plordisom.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
Assertion
Ref Expression
rrx2plordisom 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plordisom
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrx2plord2.r . . . . 5 𝑅 = (ℝ ↑m {1, 2})
2 eqid 2729 . . . . 5 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
31, 2rrx2xpref1o 48700 . . . 4 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅
4 elxpi 5653 . . . . . 6 (𝑎 ∈ (ℝ × ℝ) → ∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)))
5 elxpi 5653 . . . . . 6 (𝑏 ∈ (ℝ × ℝ) → ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)))
6 df-br 5103 . . . . . . . . . . . . 13 (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))})
7 opelxpi 5668 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
87adantl 481 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ))
9 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
109adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎 ∈ (ℝ × ℝ) ↔ ⟨𝑐, 𝑑⟩ ∈ (ℝ × ℝ)))
118, 10mpbird 257 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → 𝑎 ∈ (ℝ × ℝ))
12 opelxpi 5668 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ))
14 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1514adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑏 ∈ (ℝ × ℝ) ↔ ⟨𝑒, 𝑓⟩ ∈ (ℝ × ℝ)))
1613, 15mpbird 257 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → 𝑏 ∈ (ℝ × ℝ))
17 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (1st𝑥) = (1st𝑎))
18 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑏 → (1st𝑦) = (1st𝑏))
1917, 18breqan12d 5118 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) < (1st𝑦) ↔ (1st𝑎) < (1st𝑏)))
2017, 18eqeqan12d 2743 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((1st𝑥) = (1st𝑦) ↔ (1st𝑎) = (1st𝑏)))
21 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (2nd𝑥) = (2nd𝑎))
22 fveq2 6840 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑏 → (2nd𝑦) = (2nd𝑏))
2321, 22breqan12d 5118 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑎𝑦 = 𝑏) → ((2nd𝑥) < (2nd𝑦) ↔ (2nd𝑎) < (2nd𝑏)))
2420, 23anbi12d 632 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦)) ↔ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))))
2519, 24orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑥 = 𝑎𝑦 = 𝑏) → (((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))) ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2625opelopab2a 5490 . . . . . . . . . . . . . 14 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
2711, 16, 26syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (⟨𝑎, 𝑏⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
286, 27bitrid 283 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)))))
29 1ne2 12365 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1ex 11146 . . . . . . . . . . . . . . . . 17 1 ∈ V
31 vex 3448 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
3230, 31fvpr1 7148 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
3329, 32mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = 𝑐)
34 vex 3448 . . . . . . . . . . . . . . . . 17 𝑒 ∈ V
3530, 34fvpr1 7148 . . . . . . . . . . . . . . . 16 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3629, 35mp1i 13 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) = 𝑒)
3733, 36breq12d 5115 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 < 𝑒))
3833, 36eqeq12d 2745 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ↔ 𝑐 = 𝑒))
39 2ex 12239 . . . . . . . . . . . . . . . . . 18 2 ∈ V
40 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑑 ∈ V
4139, 40fvpr2 7149 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
4229, 41mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) = 𝑑)
43 vex 3448 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
4439, 43fvpr2 7149 . . . . . . . . . . . . . . . . 17 (1 ≠ 2 → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4529, 44mp1i 13 . . . . . . . . . . . . . . . 16 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) = 𝑓)
4642, 45breq12d 5115 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2) ↔ 𝑑 < 𝑓))
4738, 46anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
4837, 47orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
49 eqid 2729 . . . . . . . . . . . . . . . 16 {1, 2} = {1, 2}
5049, 1prelrrx2 48695 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5150adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅)
5249, 1prelrrx2 48695 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
5352adantl 481 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅)
54 rrx2plord.o . . . . . . . . . . . . . . 15 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
5554rrx2plord 48702 . . . . . . . . . . . . . 14 (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ 𝑅 ∧ {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ 𝑅) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5651, 53, 55syl2an 596 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∨ (({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘1) = ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘1) ∧ ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}‘2) < ({⟨1, 𝑒⟩, ⟨2, 𝑓⟩}‘2)))))
5731, 40op1std 7957 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → (1st𝑎) = 𝑐)
5857adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (1st𝑎) = 𝑐)
5934, 43op1std 7957 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → (1st𝑏) = 𝑒)
6059adantr 480 . . . . . . . . . . . . . . 15 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (1st𝑏) = 𝑒)
6158, 60breqan12d 5118 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) < (1st𝑏) ↔ 𝑐 < 𝑒))
6258, 60eqeqan12d 2743 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((1st𝑎) = (1st𝑏) ↔ 𝑐 = 𝑒))
6331, 40op2ndd 7958 . . . . . . . . . . . . . . . . 17 (𝑎 = ⟨𝑐, 𝑑⟩ → (2nd𝑎) = 𝑑)
6463adantr 480 . . . . . . . . . . . . . . . 16 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (2nd𝑎) = 𝑑)
6534, 43op2ndd 7958 . . . . . . . . . . . . . . . . 17 (𝑏 = ⟨𝑒, 𝑓⟩ → (2nd𝑏) = 𝑓)
6665adantr 480 . . . . . . . . . . . . . . . 16 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (2nd𝑏) = 𝑓)
6764, 66breqan12d 5118 . . . . . . . . . . . . . . 15 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ((2nd𝑎) < (2nd𝑏) ↔ 𝑑 < 𝑓))
6862, 67anbi12d 632 . . . . . . . . . . . . . 14 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏)) ↔ (𝑐 = 𝑒𝑑 < 𝑓)))
6961, 68orbi12d 918 . . . . . . . . . . . . 13 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ (𝑐 < 𝑒 ∨ (𝑐 = 𝑒𝑑 < 𝑓))))
7048, 56, 693bitr4rd 312 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (((1st𝑎) < (1st𝑏) ∨ ((1st𝑎) = (1st𝑏) ∧ (2nd𝑎) < (2nd𝑏))) ↔ {⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩}))
71 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩))
72 df-ov 7372 . . . . . . . . . . . . . . . 16 (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑐, 𝑑⟩)
7371, 72eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑎 = ⟨𝑐, 𝑑⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑))
74 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
75 opeq2 4834 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑐 → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
7675adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨1, 𝑥⟩ = ⟨1, 𝑐⟩)
77 opeq2 4834 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑑 → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7877adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑐𝑦 = 𝑑) → ⟨2, 𝑦⟩ = ⟨2, 𝑑⟩)
7976, 78preq12d 4701 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑐𝑦 = 𝑑) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8079adantl 481 . . . . . . . . . . . . . . . 16 (((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) ∧ (𝑥 = 𝑐𝑦 = 𝑑)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
81 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑐 ∈ ℝ)
82 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → 𝑑 ∈ ℝ)
83 prex 5387 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V
8483a1i 11 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} ∈ V)
8574, 80, 81, 82, 84ovmpod 7521 . . . . . . . . . . . . . . 15 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑑) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8673, 85sylan9eq 2784 . . . . . . . . . . . . . 14 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎) = {⟨1, 𝑐⟩, ⟨2, 𝑑⟩})
8786eqcomd 2735 . . . . . . . . . . . . 13 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → {⟨1, 𝑐⟩, ⟨2, 𝑑⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎))
88 fveq2 6840 . . . . . . . . . . . . . . . 16 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩))
89 df-ov 7372 . . . . . . . . . . . . . . . 16 (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘⟨𝑒, 𝑓⟩)
9088, 89eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑏 = ⟨𝑒, 𝑓⟩ → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓))
91 eqidd 2730 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}))
92 opeq2 4834 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑒 → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
9392adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨1, 𝑥⟩ = ⟨1, 𝑒⟩)
94 opeq2 4834 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑓 → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9594adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑒𝑦 = 𝑓) → ⟨2, 𝑦⟩ = ⟨2, 𝑓⟩)
9693, 95preq12d 4701 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑒𝑦 = 𝑓) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
9796adantl 481 . . . . . . . . . . . . . . . 16 (((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) ∧ (𝑥 = 𝑒𝑦 = 𝑓)) → {⟨1, 𝑥⟩, ⟨2, 𝑦⟩} = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
98 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑒 ∈ ℝ)
99 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → 𝑓 ∈ ℝ)
100 prex 5387 . . . . . . . . . . . . . . . . 17 {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V
101100a1i 11 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ∈ V)
10291, 97, 98, 99, 101ovmpod 7521 . . . . . . . . . . . . . . 15 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → (𝑒(𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})𝑓) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
10390, 102sylan9eq 2784 . . . . . . . . . . . . . 14 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏) = {⟨1, 𝑒⟩, ⟨2, 𝑓⟩})
104103eqcomd 2735 . . . . . . . . . . . . 13 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → {⟨1, 𝑒⟩, ⟨2, 𝑓⟩} = ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
10587, 104breqan12d 5118 . . . . . . . . . . . 12 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → ({⟨1, 𝑐⟩, ⟨2, 𝑑⟩}𝑂{⟨1, 𝑒⟩, ⟨2, 𝑓⟩} ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
10628, 70, 1053bitrd 305 . . . . . . . . . . 11 (((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ (𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
107106expcom 413 . . . . . . . . . 10 ((𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
108107exlimivv 1932 . . . . . . . . 9 (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
109108com12 32 . . . . . . . 8 ((𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
110109exlimivv 1932 . . . . . . 7 (∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) → (∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
111110imp 406 . . . . . 6 ((∃𝑐𝑑(𝑎 = ⟨𝑐, 𝑑⟩ ∧ (𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ)) ∧ ∃𝑒𝑓(𝑏 = ⟨𝑒, 𝑓⟩ ∧ (𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ))) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
1124, 5, 111syl2an 596 . . . . 5 ((𝑎 ∈ (ℝ × ℝ) ∧ 𝑏 ∈ (ℝ × ℝ)) → (𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏)))
113112rgen2 3175 . . . 4 𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))
114 df-isom 6508 . . . 4 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅) ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}):(ℝ × ℝ)–1-1-onto𝑅 ∧ ∀𝑎 ∈ (ℝ × ℝ)∀𝑏 ∈ (ℝ × ℝ)(𝑎{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}𝑏 ↔ ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑎)𝑂((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})‘𝑏))))
1153, 113, 114mpbir2an 711 . . 3 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)
116 rrx2plordisom.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}
117 isoeq2 7275 . . . 4 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))} → ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅)))
118116, 117ax-mp 5 . . 3 ((𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (ℝ × ℝ) ∧ 𝑦 ∈ (ℝ × ℝ)) ∧ ((1st𝑥) < (1st𝑦) ∨ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) < (2nd𝑦))))}, 𝑂((ℝ × ℝ), 𝑅))
119115, 118mpbir 231 . 2 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
120 rrx2plordisom.f . . 3 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩})
121 isoeq1 7274 . . 3 (𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) → (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)))
122120, 121ax-mp 5 . 2 (𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅) ↔ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {⟨1, 𝑥⟩, ⟨2, 𝑦⟩}) Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅))
123119, 122mpbir 231 1 𝐹 Isom 𝑇, 𝑂 ((ℝ × ℝ), 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  Vcvv 3444  {cpr 4587  cop 4591   class class class wbr 5102  {copab 5164   × cxp 5629  1-1-ontowf1o 6498  cfv 6499   Isom wiso 6500  (class class class)co 7369  cmpo 7371  1st c1st 7945  2nd c2nd 7946  m cmap 8776  cr 11043  1c1 11045   < clt 11184  2c2 12217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-2 12225
This theorem is referenced by:  rrx2plordso  48706
  Copyright terms: Public domain W3C validator