Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isoeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq1 | ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq1 6590 | . . 3 ⊢ (𝐻 = 𝐺 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
2 | fveq1 6657 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑥) = (𝐺‘𝑥)) | |
3 | fveq1 6657 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑦) = (𝐺‘𝑦)) | |
4 | 2, 3 | breq12d 5045 | . . . . 5 ⊢ (𝐻 = 𝐺 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
5 | 4 | bibi2d 346 | . . . 4 ⊢ (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
6 | 5 | 2ralbidv 3128 | . . 3 ⊢ (𝐻 = 𝐺 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
7 | 1, 6 | anbi12d 633 | . 2 ⊢ (𝐻 = 𝐺 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))))) |
8 | df-isom 6344 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
9 | df-isom 6344 | . 2 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) | |
10 | 7, 8, 9 | 3bitr4g 317 | 1 ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∀wral 3070 class class class wbr 5032 –1-1-onto→wf1o 6334 ‘cfv 6335 Isom wiso 6336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-un 3863 df-in 3865 df-ss 3875 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 |
This theorem is referenced by: isores1 7081 wemoiso 7678 wemoiso2 7679 ordiso 9013 oieu 9036 finnisoeu 9573 iunfictbso 9574 infrenegsup 11660 ltweuz 13378 fz1isolem 13871 isercolllem2 15070 isercoll 15072 dvgt0lem2 24702 efcvx 25143 relogiso 25288 logccv 25353 erdszelem1 32669 erdsze 32680 erdsze2lem2 32682 fzisoeu 42300 fourierdlem36 43151 fourierdlem96 43210 fourierdlem97 43211 fourierdlem98 43212 fourierdlem99 43213 fourierdlem105 43219 fourierdlem106 43220 fourierdlem108 43222 fourierdlem110 43224 fourierdlem112 43226 fourierdlem113 43227 fourierdlem115 43229 rrx2plordisom 45502 |
Copyright terms: Public domain | W3C validator |