| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isoeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
| Ref | Expression |
|---|---|
| isoeq1 | ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq1 6811 | . . 3 ⊢ (𝐻 = 𝐺 → (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐺:𝐴–1-1-onto→𝐵)) | |
| 2 | fveq1 6880 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑥) = (𝐺‘𝑥)) | |
| 3 | fveq1 6880 | . . . . . 6 ⊢ (𝐻 = 𝐺 → (𝐻‘𝑦) = (𝐺‘𝑦)) | |
| 4 | 2, 3 | breq12d 5137 | . . . . 5 ⊢ (𝐻 = 𝐺 → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))) |
| 5 | 4 | bibi2d 342 | . . . 4 ⊢ (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
| 6 | 5 | 2ralbidv 3209 | . . 3 ⊢ (𝐻 = 𝐺 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) |
| 7 | 1, 6 | anbi12d 632 | . 2 ⊢ (𝐻 = 𝐺 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦))))) |
| 8 | df-isom 6545 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
| 9 | df-isom 6545 | . 2 ⊢ (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐺‘𝑥)𝑆(𝐺‘𝑦)))) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3052 class class class wbr 5124 –1-1-onto→wf1o 6535 ‘cfv 6536 Isom wiso 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 |
| This theorem is referenced by: isores1 7332 wemoiso 7977 wemoiso2 7978 ordiso 9535 oieu 9558 finnisoeu 10132 iunfictbso 10133 infrenegsup 12230 ltweuz 13984 fz1isolem 14484 isercolllem2 15687 isercoll 15689 dvgt0lem2 25965 efcvx 26416 relogiso 26564 logccv 26629 erdszelem1 35218 erdsze 35229 erdsze2lem2 35231 isoeq145d 43410 fzisoeu 45296 fourierdlem36 46139 fourierdlem96 46198 fourierdlem97 46199 fourierdlem98 46200 fourierdlem99 46201 fourierdlem105 46207 fourierdlem106 46208 fourierdlem108 46210 fourierdlem110 46212 fourierdlem112 46214 fourierdlem113 46215 fourierdlem115 46217 rrx2plordisom 48670 |
| Copyright terms: Public domain | W3C validator |