MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isoeq1 Structured version   Visualization version   GIF version

Theorem isoeq1 7318
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
Assertion
Ref Expression
isoeq1 (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))

Proof of Theorem isoeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oeq1 6822 . . 3 (𝐻 = 𝐺 → (𝐻:𝐴1-1-onto𝐵𝐺:𝐴1-1-onto𝐵))
2 fveq1 6891 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑥) = (𝐺𝑥))
3 fveq1 6891 . . . . . 6 (𝐻 = 𝐺 → (𝐻𝑦) = (𝐺𝑦))
42, 3breq12d 5162 . . . . 5 (𝐻 = 𝐺 → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐺𝑥)𝑆(𝐺𝑦)))
54bibi2d 341 . . . 4 (𝐻 = 𝐺 → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
652ralbidv 3216 . . 3 (𝐻 = 𝐺 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
71, 6anbi12d 629 . 2 (𝐻 = 𝐺 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ↔ (𝐺:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦)))))
8 df-isom 6553 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
9 df-isom 6553 . 2 (𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐺:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐺𝑥)𝑆(𝐺𝑦))))
107, 8, 93bitr4g 313 1 (𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wral 3059   class class class wbr 5149  1-1-ontowf1o 6543  cfv 6544   Isom wiso 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553
This theorem is referenced by:  isores1  7335  wemoiso  7964  wemoiso2  7965  ordiso  9515  oieu  9538  finnisoeu  10112  iunfictbso  10113  infrenegsup  12203  ltweuz  13932  fz1isolem  14428  isercolllem2  15618  isercoll  15620  dvgt0lem2  25754  efcvx  26195  relogiso  26340  logccv  26405  erdszelem1  34478  erdsze  34489  erdsze2lem2  34491  isoeq145d  42474  fzisoeu  44310  fourierdlem36  45159  fourierdlem96  45218  fourierdlem97  45219  fourierdlem98  45220  fourierdlem99  45221  fourierdlem105  45227  fourierdlem106  45228  fourierdlem108  45230  fourierdlem110  45232  fourierdlem112  45234  fourierdlem113  45235  fourierdlem115  45237  rrx2plordisom  47498
  Copyright terms: Public domain W3C validator