Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iundif1 | Structured version Visualization version GIF version |
Description: Indexed union of class difference with the subtrahend held constant. (Contributed by Brendan Leahy, 6-Aug-2018.) |
Ref | Expression |
---|---|
iundif1 | ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.41v 3273 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
2 | eldif 3893 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
3 | 2 | rexbii 3177 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
4 | eliun 4925 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
5 | 4 | anbi1i 623 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
6 | 1, 3, 5 | 3bitr4i 302 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) |
7 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∖ 𝐶)) | |
8 | eldif 3893 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ¬ 𝑦 ∈ 𝐶)) | |
9 | 6, 7, 8 | 3bitr4i 302 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶)) |
10 | 9 | eqriv 2735 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∖ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ∖ cdif 3880 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-iun 4923 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |