Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadifss Structured version   Visualization version   GIF version

Theorem imadifss 36919
Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.)
Assertion
Ref Expression
imadifss ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadifss
StepHypRef Expression
1 ssun2 4165 . . . . 5 𝐴 ⊆ (𝐵𝐴)
2 undif2 4468 . . . . 5 (𝐵 ∪ (𝐴𝐵)) = (𝐵𝐴)
31, 2sseqtrri 4011 . . . 4 𝐴 ⊆ (𝐵 ∪ (𝐴𝐵))
4 imass2 6091 . . . 4 (𝐴 ⊆ (𝐵 ∪ (𝐴𝐵)) → (𝐹𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴𝐵))))
53, 4ax-mp 5 . . 3 (𝐹𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴𝐵)))
6 imaundi 6139 . . 3 (𝐹 “ (𝐵 ∪ (𝐴𝐵))) = ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵)))
75, 6sseqtri 4010 . 2 (𝐹𝐴) ⊆ ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵)))
8 ssundif 4479 . 2 ((𝐹𝐴) ⊆ ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵))) ↔ ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵)))
97, 8mpbi 229 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  cdif 3937  cun 3938  wss 3940  cima 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-xp 5672  df-cnv 5674  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679
This theorem is referenced by:  poimirlem30  36974
  Copyright terms: Public domain W3C validator