![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imadifss | Structured version Visualization version GIF version |
Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
imadifss | ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4202 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
2 | undif2 4500 | . . . . 5 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtrri 4046 | . . . 4 ⊢ 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) |
4 | imass2 6132 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
6 | imaundi 6181 | . . 3 ⊢ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) | |
7 | 5, 6 | sseqtri 4045 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) |
8 | ssundif 4511 | . 2 ⊢ ((𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) ↔ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵))) | |
9 | 7, 8 | mpbi 230 | 1 ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: poimirlem30 37610 |
Copyright terms: Public domain | W3C validator |