| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imadifss | Structured version Visualization version GIF version | ||
| Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
| Ref | Expression |
|---|---|
| imadifss | ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4142 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
| 2 | undif2 4440 | . . . . 5 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
| 3 | 1, 2 | sseqtrri 3996 | . . . 4 ⊢ 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) |
| 4 | imass2 6073 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵)))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
| 6 | imaundi 6122 | . . 3 ⊢ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) | |
| 7 | 5, 6 | sseqtri 3995 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) |
| 8 | ssundif 4451 | . 2 ⊢ ((𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) ↔ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵))) | |
| 9 | 7, 8 | mpbi 230 | 1 ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∖ cdif 3911 ∪ cun 3912 ⊆ wss 3914 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: poimirlem30 37644 |
| Copyright terms: Public domain | W3C validator |