![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imadifss | Structured version Visualization version GIF version |
Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.) |
Ref | Expression |
---|---|
imadifss | ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4004 | . . . . 5 ⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | |
2 | undif2 4267 | . . . . 5 ⊢ (𝐵 ∪ (𝐴 ∖ 𝐵)) = (𝐵 ∪ 𝐴) | |
3 | 1, 2 | sseqtr4i 3863 | . . . 4 ⊢ 𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) |
4 | imass2 5742 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∪ (𝐴 ∖ 𝐵)) → (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵)))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (𝐹 “ 𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) |
6 | imaundi 5786 | . . 3 ⊢ (𝐹 “ (𝐵 ∪ (𝐴 ∖ 𝐵))) = ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) | |
7 | 5, 6 | sseqtri 3862 | . 2 ⊢ (𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) |
8 | ssundif 4275 | . 2 ⊢ ((𝐹 “ 𝐴) ⊆ ((𝐹 “ 𝐵) ∪ (𝐹 “ (𝐴 ∖ 𝐵))) ↔ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵))) | |
9 | 7, 8 | mpbi 222 | 1 ⊢ ((𝐹 “ 𝐴) ∖ (𝐹 “ 𝐵)) ⊆ (𝐹 “ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∖ cdif 3795 ∪ cun 3796 ⊆ wss 3798 “ cima 5345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-br 4874 df-opab 4936 df-xp 5348 df-cnv 5350 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 |
This theorem is referenced by: poimirlem30 33976 |
Copyright terms: Public domain | W3C validator |