Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imadifss Structured version   Visualization version   GIF version

Theorem imadifss 37555
Description: The difference of images is a subset of the image of the difference. (Contributed by Brendan Leahy, 21-Aug-2020.)
Assertion
Ref Expression
imadifss ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))

Proof of Theorem imadifss
StepHypRef Expression
1 ssun2 4202 . . . . 5 𝐴 ⊆ (𝐵𝐴)
2 undif2 4500 . . . . 5 (𝐵 ∪ (𝐴𝐵)) = (𝐵𝐴)
31, 2sseqtrri 4046 . . . 4 𝐴 ⊆ (𝐵 ∪ (𝐴𝐵))
4 imass2 6132 . . . 4 (𝐴 ⊆ (𝐵 ∪ (𝐴𝐵)) → (𝐹𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴𝐵))))
53, 4ax-mp 5 . . 3 (𝐹𝐴) ⊆ (𝐹 “ (𝐵 ∪ (𝐴𝐵)))
6 imaundi 6181 . . 3 (𝐹 “ (𝐵 ∪ (𝐴𝐵))) = ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵)))
75, 6sseqtri 4045 . 2 (𝐹𝐴) ⊆ ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵)))
8 ssundif 4511 . 2 ((𝐹𝐴) ⊆ ((𝐹𝐵) ∪ (𝐹 “ (𝐴𝐵))) ↔ ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵)))
97, 8mpbi 230 1 ((𝐹𝐴) ∖ (𝐹𝐵)) ⊆ (𝐹 “ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  cdif 3973  cun 3974  wss 3976  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  poimirlem30  37610
  Copyright terms: Public domain W3C validator