Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iuneq1i Structured version   Visualization version   GIF version

Theorem iuneq1i 42524
Description: Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
iuneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
iuneq1i 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iuneq1i
StepHypRef Expression
1 iuneq1i.1 . 2 𝐴 = 𝐵
2 iuneq1 4937 . 2 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
31, 2ax-mp 5 1 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  ovolval4lem1  44077
  Copyright terms: Public domain W3C validator