| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4966 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4966 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq1d 4979 iinvdif 5039 iunxprg 5055 iununi 5058 iunsuc 6407 funopsn 7102 funiunfv 7204 onfununi 8287 iunfi 9270 ttrclselem1 9654 ttrclselem2 9655 rankuni2b 9782 pwsdompw 10132 ackbij1lem7 10154 r1om 10172 fictb 10173 cfsmolem 10199 ituniiun 10351 domtriomlem 10371 domtriom 10372 inar1 10704 fsum2d 15713 fsumiun 15763 ackbijnn 15770 fprod2d 15923 prmreclem5 16867 lpival 21266 fiuncmp 23324 ovolfiniun 25435 ovoliunnul 25441 finiunmbl 25478 volfiniun 25481 voliunlem1 25484 iuninc 32539 ofpreima2 32640 gsumpart 33040 esum2dlem 34075 sigaclfu2 34104 sigapildsyslem 34144 fiunelros 34157 bnj548 34880 bnj554 34882 bnj594 34895 neibastop2lem 36341 istotbnd3 37758 0totbnd 37760 sstotbnd2 37761 sstotbnd 37762 sstotbnd3 37763 totbndbnd 37776 prdstotbnd 37781 cntotbnd 37783 heibor 37808 dfrcl4 43658 iunrelexp0 43684 comptiunov2i 43688 corclrcl 43689 cotrcltrcl 43707 trclfvdecomr 43710 dfrtrcl4 43720 corcltrcl 43721 cotrclrcl 43724 fiiuncl 45052 sge0iunmptlemfi 46404 caragenfiiuncl 46506 carageniuncllem1 46512 ovnsubadd2lem 46636 |
| Copyright terms: Public domain | W3C validator |