| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4966 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4966 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: iuneq1d 4979 iinvdif 5039 iunxprg 5055 iununi 5058 iunsuc 6407 funopsn 7102 funiunfv 7204 onfununi 8287 iunfi 9270 ttrclselem1 9654 ttrclselem2 9655 rankuni2b 9782 pwsdompw 10132 ackbij1lem7 10154 r1om 10172 fictb 10173 cfsmolem 10199 ituniiun 10351 domtriomlem 10371 domtriom 10372 inar1 10704 fsum2d 15713 fsumiun 15763 ackbijnn 15770 fprod2d 15923 prmreclem5 16867 lpival 21210 fiuncmp 23267 ovolfiniun 25378 ovoliunnul 25384 finiunmbl 25421 volfiniun 25424 voliunlem1 25427 iuninc 32462 ofpreima2 32563 gsumpart 32970 esum2dlem 34055 sigaclfu2 34084 sigapildsyslem 34124 fiunelros 34137 bnj548 34860 bnj554 34862 bnj594 34875 neibastop2lem 36321 istotbnd3 37738 0totbnd 37740 sstotbnd2 37741 sstotbnd 37742 sstotbnd3 37743 totbndbnd 37756 prdstotbnd 37761 cntotbnd 37763 heibor 37788 dfrcl4 43638 iunrelexp0 43664 comptiunov2i 43668 corclrcl 43669 cotrcltrcl 43687 trclfvdecomr 43690 dfrtrcl4 43700 corcltrcl 43701 cotrclrcl 43704 fiiuncl 45032 sge0iunmptlemfi 46384 caragenfiiuncl 46486 carageniuncllem1 46492 ovnsubadd2lem 46616 |
| Copyright terms: Public domain | W3C validator |