| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4973 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4973 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3965 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3965 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: iuneq1d 4986 iinvdif 5047 iunxprg 5063 iununi 5066 iunsuc 6422 funopsn 7123 funiunfv 7225 onfununi 8313 iunfi 9301 ttrclselem1 9685 ttrclselem2 9686 rankuni2b 9813 pwsdompw 10163 ackbij1lem7 10185 r1om 10203 fictb 10204 cfsmolem 10230 ituniiun 10382 domtriomlem 10402 domtriom 10403 inar1 10735 fsum2d 15744 fsumiun 15794 ackbijnn 15801 fprod2d 15954 prmreclem5 16898 lpival 21241 fiuncmp 23298 ovolfiniun 25409 ovoliunnul 25415 finiunmbl 25452 volfiniun 25455 voliunlem1 25458 iuninc 32496 ofpreima2 32597 gsumpart 33004 esum2dlem 34089 sigaclfu2 34118 sigapildsyslem 34158 fiunelros 34171 bnj548 34894 bnj554 34896 bnj594 34909 neibastop2lem 36355 istotbnd3 37772 0totbnd 37774 sstotbnd2 37775 sstotbnd 37776 sstotbnd3 37777 totbndbnd 37790 prdstotbnd 37795 cntotbnd 37797 heibor 37822 dfrcl4 43672 iunrelexp0 43698 comptiunov2i 43702 corclrcl 43703 cotrcltrcl 43721 trclfvdecomr 43724 dfrtrcl4 43734 corcltrcl 43735 cotrclrcl 43738 fiiuncl 45066 sge0iunmptlemfi 46418 caragenfiiuncl 46520 carageniuncllem1 46526 ovnsubadd2lem 46650 |
| Copyright terms: Public domain | W3C validator |