| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 5006 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 5006 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3999 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3999 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3951 ∪ ciun 4991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-v 3482 df-ss 3968 df-iun 4993 |
| This theorem is referenced by: iuneq1d 5019 iinvdif 5080 iunxprg 5096 iununi 5099 iunsuc 6469 funopsn 7168 funiunfv 7268 onfununi 8381 iunfi 9383 ttrclselem1 9765 ttrclselem2 9766 rankuni2b 9893 pwsdompw 10243 ackbij1lem7 10265 r1om 10283 fictb 10284 cfsmolem 10310 ituniiun 10462 domtriomlem 10482 domtriom 10483 inar1 10815 fsum2d 15807 fsumiun 15857 ackbijnn 15864 fprod2d 16017 prmreclem5 16958 lpival 21334 fiuncmp 23412 ovolfiniun 25536 ovoliunnul 25542 finiunmbl 25579 volfiniun 25582 voliunlem1 25585 iuninc 32573 ofpreima2 32676 gsumpart 33060 esum2dlem 34093 sigaclfu2 34122 sigapildsyslem 34162 fiunelros 34175 bnj548 34911 bnj554 34913 bnj594 34926 neibastop2lem 36361 istotbnd3 37778 0totbnd 37780 sstotbnd2 37781 sstotbnd 37782 sstotbnd3 37783 totbndbnd 37796 prdstotbnd 37801 cntotbnd 37803 heibor 37828 dfrcl4 43689 iunrelexp0 43715 comptiunov2i 43719 corclrcl 43720 cotrcltrcl 43738 trclfvdecomr 43741 dfrtrcl4 43751 corcltrcl 43752 cotrclrcl 43755 fiiuncl 45070 sge0iunmptlemfi 46428 caragenfiiuncl 46530 carageniuncllem1 46536 ovnsubadd2lem 46660 |
| Copyright terms: Public domain | W3C validator |