Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 4918 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 4918 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 616 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3916 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3916 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 295 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ⊆ wss 3866 ∪ ciun 4904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-in 3873 df-ss 3883 df-iun 4906 |
This theorem is referenced by: iuneq1d 4931 iinvdif 4988 iunxprg 5004 iununi 5007 iunsuc 6295 funopsn 6963 funiunfv 7061 onfununi 8078 iunfi 8964 trpredlem1 9332 trpredtr 9335 trpredmintr 9336 trpredrec 9342 rankuni2b 9469 pwsdompw 9818 ackbij1lem7 9840 r1om 9858 fictb 9859 cfsmolem 9884 ituniiun 10036 domtriomlem 10056 domtriom 10057 inar1 10389 fsum2d 15335 fsumiun 15385 ackbijnn 15392 fprod2d 15543 prmreclem5 16473 lpival 20283 fiuncmp 22301 ovolfiniun 24398 ovoliunnul 24404 finiunmbl 24441 volfiniun 24444 voliunlem1 24447 iuninc 30619 ofpreima2 30723 gsumpart 31034 esum2dlem 31772 sigaclfu2 31801 sigapildsyslem 31841 fiunelros 31854 bnj548 32590 bnj554 32592 bnj594 32605 neibastop2lem 34286 istotbnd3 35666 0totbnd 35668 sstotbnd2 35669 sstotbnd 35670 sstotbnd3 35671 totbndbnd 35684 prdstotbnd 35689 cntotbnd 35691 heibor 35716 dfrcl4 40961 iunrelexp0 40987 comptiunov2i 40991 corclrcl 40992 cotrcltrcl 41010 trclfvdecomr 41013 dfrtrcl4 41023 corcltrcl 41024 cotrclrcl 41027 fiiuncl 42286 iuneq1i 42308 sge0iunmptlemfi 43626 caragenfiiuncl 43728 carageniuncllem1 43734 ovnsubadd2lem 43858 |
Copyright terms: Public domain | W3C validator |