| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4970 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4970 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3962 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3962 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-ss 3931 df-iun 4957 |
| This theorem is referenced by: iuneq1d 4983 iinvdif 5044 iunxprg 5060 iununi 5063 iunsuc 6419 funopsn 7120 funiunfv 7222 onfununi 8310 iunfi 9294 ttrclselem1 9678 ttrclselem2 9679 rankuni2b 9806 pwsdompw 10156 ackbij1lem7 10178 r1om 10196 fictb 10197 cfsmolem 10223 ituniiun 10375 domtriomlem 10395 domtriom 10396 inar1 10728 fsum2d 15737 fsumiun 15787 ackbijnn 15794 fprod2d 15947 prmreclem5 16891 lpival 21234 fiuncmp 23291 ovolfiniun 25402 ovoliunnul 25408 finiunmbl 25445 volfiniun 25448 voliunlem1 25451 iuninc 32489 ofpreima2 32590 gsumpart 32997 esum2dlem 34082 sigaclfu2 34111 sigapildsyslem 34151 fiunelros 34164 bnj548 34887 bnj554 34889 bnj594 34902 neibastop2lem 36348 istotbnd3 37765 0totbnd 37767 sstotbnd2 37768 sstotbnd 37769 sstotbnd3 37770 totbndbnd 37783 prdstotbnd 37788 cntotbnd 37790 heibor 37815 dfrcl4 43665 iunrelexp0 43691 comptiunov2i 43695 corclrcl 43696 cotrcltrcl 43714 trclfvdecomr 43717 dfrtrcl4 43727 corcltrcl 43728 cotrclrcl 43731 fiiuncl 45059 sge0iunmptlemfi 46411 caragenfiiuncl 46513 carageniuncllem1 46519 ovnsubadd2lem 46643 |
| Copyright terms: Public domain | W3C validator |