Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 4959 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 4959 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3950 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3950 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ⊆ wss 3901 ∪ ciun 4945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rex 3072 df-v 3444 df-in 3908 df-ss 3918 df-iun 4947 |
This theorem is referenced by: iuneq1d 4972 iinvdif 5031 iunxprg 5047 iununi 5050 iunsuc 6390 funopsn 7080 funiunfv 7181 onfununi 8246 iunfi 9209 ttrclselem1 9586 ttrclselem2 9587 rankuni2b 9714 pwsdompw 10065 ackbij1lem7 10087 r1om 10105 fictb 10106 cfsmolem 10131 ituniiun 10283 domtriomlem 10303 domtriom 10304 inar1 10636 fsum2d 15582 fsumiun 15632 ackbijnn 15639 fprod2d 15790 prmreclem5 16718 lpival 20621 fiuncmp 22660 ovolfiniun 24770 ovoliunnul 24776 finiunmbl 24813 volfiniun 24816 voliunlem1 24819 iuninc 31185 ofpreima2 31288 gsumpart 31600 esum2dlem 32356 sigaclfu2 32385 sigapildsyslem 32425 fiunelros 32438 bnj548 33174 bnj554 33176 bnj594 33189 neibastop2lem 34686 istotbnd3 36085 0totbnd 36087 sstotbnd2 36088 sstotbnd 36089 sstotbnd3 36090 totbndbnd 36103 prdstotbnd 36108 cntotbnd 36110 heibor 36135 dfrcl4 41657 iunrelexp0 41683 comptiunov2i 41687 corclrcl 41688 cotrcltrcl 41706 trclfvdecomr 41709 dfrtrcl4 41719 corcltrcl 41720 cotrclrcl 41723 fiiuncl 42985 iuneq1i 43007 sge0iunmptlemfi 44340 caragenfiiuncl 44442 carageniuncllem1 44448 ovnsubadd2lem 44572 |
Copyright terms: Public domain | W3C validator |