![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 5012 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 5012 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-iun 5000 |
This theorem is referenced by: iuneq1d 5025 iinvdif 5084 iunxprg 5100 iununi 5103 iunsuc 6450 funopsn 7146 funiunfv 7247 onfununi 8341 iunfi 9340 ttrclselem1 9720 ttrclselem2 9721 rankuni2b 9848 pwsdompw 10199 ackbij1lem7 10221 r1om 10239 fictb 10240 cfsmolem 10265 ituniiun 10417 domtriomlem 10437 domtriom 10438 inar1 10770 fsum2d 15717 fsumiun 15767 ackbijnn 15774 fprod2d 15925 prmreclem5 16853 lpival 20883 fiuncmp 22908 ovolfiniun 25018 ovoliunnul 25024 finiunmbl 25061 volfiniun 25064 voliunlem1 25067 iuninc 31792 ofpreima2 31891 gsumpart 32207 esum2dlem 33090 sigaclfu2 33119 sigapildsyslem 33159 fiunelros 33172 bnj548 33908 bnj554 33910 bnj594 33923 neibastop2lem 35245 istotbnd3 36639 0totbnd 36641 sstotbnd2 36642 sstotbnd 36643 sstotbnd3 36644 totbndbnd 36657 prdstotbnd 36662 cntotbnd 36664 heibor 36689 dfrcl4 42427 iunrelexp0 42453 comptiunov2i 42457 corclrcl 42458 cotrcltrcl 42476 trclfvdecomr 42479 dfrtrcl4 42489 corcltrcl 42490 cotrclrcl 42493 fiiuncl 43752 iuneq1i 43774 sge0iunmptlemfi 45129 caragenfiiuncl 45231 carageniuncllem1 45237 ovnsubadd2lem 45361 |
Copyright terms: Public domain | W3C validator |