Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 4943 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 4943 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3940 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3940 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3891 ∪ ciun 4929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-v 3432 df-in 3898 df-ss 3908 df-iun 4931 |
This theorem is referenced by: iuneq1d 4956 iinvdif 5013 iunxprg 5029 iununi 5032 iunsuc 6345 funopsn 7014 funiunfv 7115 onfununi 8156 iunfi 9068 ttrclselem1 9444 ttrclselem2 9445 trpredlem1 9457 trpredtr 9460 trpredmintr 9461 trpredrec 9467 rankuni2b 9595 pwsdompw 9944 ackbij1lem7 9966 r1om 9984 fictb 9985 cfsmolem 10010 ituniiun 10162 domtriomlem 10182 domtriom 10183 inar1 10515 fsum2d 15464 fsumiun 15514 ackbijnn 15521 fprod2d 15672 prmreclem5 16602 lpival 20497 fiuncmp 22536 ovolfiniun 24646 ovoliunnul 24652 finiunmbl 24689 volfiniun 24692 voliunlem1 24695 iuninc 30879 ofpreima2 30982 gsumpart 31294 esum2dlem 32039 sigaclfu2 32068 sigapildsyslem 32108 fiunelros 32121 bnj548 32856 bnj554 32858 bnj594 32871 neibastop2lem 34528 istotbnd3 35908 0totbnd 35910 sstotbnd2 35911 sstotbnd 35912 sstotbnd3 35913 totbndbnd 35926 prdstotbnd 35931 cntotbnd 35933 heibor 35958 dfrcl4 41237 iunrelexp0 41263 comptiunov2i 41267 corclrcl 41268 cotrcltrcl 41286 trclfvdecomr 41289 dfrtrcl4 41299 corcltrcl 41300 cotrclrcl 41303 fiiuncl 42566 iuneq1i 42588 sge0iunmptlemfi 43905 caragenfiiuncl 44007 carageniuncllem1 44013 ovnsubadd2lem 44137 |
Copyright terms: Public domain | W3C validator |