| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4954 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4954 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3945 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3945 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3897 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-v 3438 df-ss 3914 df-iun 4941 |
| This theorem is referenced by: iuneq1d 4967 iinvdif 5026 iunxprg 5042 iununi 5045 iunsuc 6393 funopsn 7081 funiunfv 7182 onfununi 8261 iunfi 9227 ttrclselem1 9615 ttrclselem2 9616 rankuni2b 9746 pwsdompw 10094 ackbij1lem7 10116 r1om 10134 fictb 10135 cfsmolem 10161 ituniiun 10313 domtriomlem 10333 domtriom 10334 inar1 10666 fsum2d 15678 fsumiun 15728 ackbijnn 15735 fprod2d 15888 prmreclem5 16832 lpival 21261 fiuncmp 23319 ovolfiniun 25429 ovoliunnul 25435 finiunmbl 25472 volfiniun 25475 voliunlem1 25478 iuninc 32540 ofpreima2 32648 gsumpart 33037 esum2dlem 34105 sigaclfu2 34134 sigapildsyslem 34174 fiunelros 34187 bnj548 34909 bnj554 34911 bnj594 34924 neibastop2lem 36402 istotbnd3 37819 0totbnd 37821 sstotbnd2 37822 sstotbnd 37823 sstotbnd3 37824 totbndbnd 37837 prdstotbnd 37842 cntotbnd 37844 heibor 37869 dfrcl4 43717 iunrelexp0 43743 comptiunov2i 43747 corclrcl 43748 cotrcltrcl 43766 trclfvdecomr 43769 dfrtrcl4 43779 corcltrcl 43780 cotrclrcl 43783 fiiuncl 45110 sge0iunmptlemfi 46459 caragenfiiuncl 46561 carageniuncllem1 46567 ovnsubadd2lem 46691 |
| Copyright terms: Public domain | W3C validator |