| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4956 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4956 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3951 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3951 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3438 df-ss 3920 df-iun 4943 |
| This theorem is referenced by: iuneq1d 4969 iinvdif 5029 iunxprg 5045 iununi 5048 iunsuc 6394 funopsn 7082 funiunfv 7184 onfununi 8264 iunfi 9233 ttrclselem1 9621 ttrclselem2 9622 rankuni2b 9749 pwsdompw 10097 ackbij1lem7 10119 r1om 10137 fictb 10138 cfsmolem 10164 ituniiun 10316 domtriomlem 10336 domtriom 10337 inar1 10669 fsum2d 15678 fsumiun 15728 ackbijnn 15735 fprod2d 15888 prmreclem5 16832 lpival 21231 fiuncmp 23289 ovolfiniun 25400 ovoliunnul 25406 finiunmbl 25443 volfiniun 25446 voliunlem1 25449 iuninc 32504 ofpreima2 32609 gsumpart 33010 esum2dlem 34059 sigaclfu2 34088 sigapildsyslem 34128 fiunelros 34141 bnj548 34864 bnj554 34866 bnj594 34879 neibastop2lem 36334 istotbnd3 37751 0totbnd 37753 sstotbnd2 37754 sstotbnd 37755 sstotbnd3 37756 totbndbnd 37769 prdstotbnd 37774 cntotbnd 37776 heibor 37801 dfrcl4 43649 iunrelexp0 43675 comptiunov2i 43679 corclrcl 43680 cotrcltrcl 43698 trclfvdecomr 43701 dfrtrcl4 43711 corcltrcl 43712 cotrclrcl 43715 fiiuncl 45043 sge0iunmptlemfi 46394 caragenfiiuncl 46496 carageniuncllem1 46502 ovnsubadd2lem 46626 |
| Copyright terms: Public domain | W3C validator |