![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 5011 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 5011 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 4011 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4011 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: iuneq1d 5024 iinvdif 5085 iunxprg 5101 iununi 5104 iunsuc 6471 funopsn 7168 funiunfv 7268 onfununi 8380 iunfi 9381 ttrclselem1 9763 ttrclselem2 9764 rankuni2b 9891 pwsdompw 10241 ackbij1lem7 10263 r1om 10281 fictb 10282 cfsmolem 10308 ituniiun 10460 domtriomlem 10480 domtriom 10481 inar1 10813 fsum2d 15804 fsumiun 15854 ackbijnn 15861 fprod2d 16014 prmreclem5 16954 lpival 21352 fiuncmp 23428 ovolfiniun 25550 ovoliunnul 25556 finiunmbl 25593 volfiniun 25596 voliunlem1 25599 iuninc 32581 ofpreima2 32683 gsumpart 33043 esum2dlem 34073 sigaclfu2 34102 sigapildsyslem 34142 fiunelros 34155 bnj548 34890 bnj554 34892 bnj594 34905 neibastop2lem 36343 istotbnd3 37758 0totbnd 37760 sstotbnd2 37761 sstotbnd 37762 sstotbnd3 37763 totbndbnd 37776 prdstotbnd 37781 cntotbnd 37783 heibor 37808 dfrcl4 43666 iunrelexp0 43692 comptiunov2i 43696 corclrcl 43697 cotrcltrcl 43715 trclfvdecomr 43718 dfrtrcl4 43728 corcltrcl 43729 cotrclrcl 43732 fiiuncl 45005 sge0iunmptlemfi 46369 caragenfiiuncl 46471 carageniuncllem1 46477 ovnsubadd2lem 46601 |
Copyright terms: Public domain | W3C validator |