![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 5029 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 5029 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4024 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: iuneq1d 5042 iinvdif 5103 iunxprg 5119 iununi 5122 iunsuc 6480 funopsn 7182 funiunfv 7285 onfununi 8397 iunfi 9411 ttrclselem1 9794 ttrclselem2 9795 rankuni2b 9922 pwsdompw 10272 ackbij1lem7 10294 r1om 10312 fictb 10313 cfsmolem 10339 ituniiun 10491 domtriomlem 10511 domtriom 10512 inar1 10844 fsum2d 15819 fsumiun 15869 ackbijnn 15876 fprod2d 16029 prmreclem5 16967 lpival 21357 fiuncmp 23433 ovolfiniun 25555 ovoliunnul 25561 finiunmbl 25598 volfiniun 25601 voliunlem1 25604 iuninc 32583 ofpreima2 32684 gsumpart 33038 esum2dlem 34056 sigaclfu2 34085 sigapildsyslem 34125 fiunelros 34138 bnj548 34873 bnj554 34875 bnj594 34888 neibastop2lem 36326 istotbnd3 37731 0totbnd 37733 sstotbnd2 37734 sstotbnd 37735 sstotbnd3 37736 totbndbnd 37749 prdstotbnd 37754 cntotbnd 37756 heibor 37781 dfrcl4 43638 iunrelexp0 43664 comptiunov2i 43668 corclrcl 43669 cotrcltrcl 43687 trclfvdecomr 43690 dfrtrcl4 43700 corcltrcl 43701 cotrclrcl 43704 fiiuncl 44967 sge0iunmptlemfi 46334 caragenfiiuncl 46436 carageniuncllem1 46442 ovnsubadd2lem 46566 |
Copyright terms: Public domain | W3C validator |