Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 4945 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 4945 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3941 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3941 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ⊆ wss 3892 ∪ ciun 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3072 df-v 3439 df-in 3899 df-ss 3909 df-iun 4933 |
This theorem is referenced by: iuneq1d 4958 iinvdif 5016 iunxprg 5032 iununi 5035 iunsuc 6365 funopsn 7052 funiunfv 7153 onfununi 8203 iunfi 9151 ttrclselem1 9527 ttrclselem2 9528 rankuni2b 9655 pwsdompw 10006 ackbij1lem7 10028 r1om 10046 fictb 10047 cfsmolem 10072 ituniiun 10224 domtriomlem 10244 domtriom 10245 inar1 10577 fsum2d 15528 fsumiun 15578 ackbijnn 15585 fprod2d 15736 prmreclem5 16666 lpival 20561 fiuncmp 22600 ovolfiniun 24710 ovoliunnul 24716 finiunmbl 24753 volfiniun 24756 voliunlem1 24759 iuninc 30945 ofpreima2 31048 gsumpart 31360 esum2dlem 32105 sigaclfu2 32134 sigapildsyslem 32174 fiunelros 32187 bnj548 32922 bnj554 32924 bnj594 32937 neibastop2lem 34594 istotbnd3 35973 0totbnd 35975 sstotbnd2 35976 sstotbnd 35977 sstotbnd3 35978 totbndbnd 35991 prdstotbnd 35996 cntotbnd 35998 heibor 36023 dfrcl4 41322 iunrelexp0 41348 comptiunov2i 41352 corclrcl 41353 cotrcltrcl 41371 trclfvdecomr 41374 dfrtrcl4 41384 corcltrcl 41385 cotrclrcl 41388 fiiuncl 42651 iuneq1i 42673 sge0iunmptlemfi 44001 caragenfiiuncl 44103 carageniuncllem1 44109 ovnsubadd2lem 44233 |
Copyright terms: Public domain | W3C validator |