![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version |
Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss1 5012 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
2 | iunss1 5012 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-v 3477 df-in 3956 df-ss 3966 df-iun 5000 |
This theorem is referenced by: iuneq1d 5025 iinvdif 5084 iunxprg 5100 iununi 5103 iunsuc 6450 funopsn 7146 funiunfv 7247 onfununi 8341 iunfi 9340 ttrclselem1 9720 ttrclselem2 9721 rankuni2b 9848 pwsdompw 10199 ackbij1lem7 10221 r1om 10239 fictb 10240 cfsmolem 10265 ituniiun 10417 domtriomlem 10437 domtriom 10438 inar1 10770 fsum2d 15717 fsumiun 15767 ackbijnn 15774 fprod2d 15925 prmreclem5 16853 lpival 20883 fiuncmp 22908 ovolfiniun 25018 ovoliunnul 25024 finiunmbl 25061 volfiniun 25064 voliunlem1 25067 iuninc 31823 ofpreima2 31922 gsumpart 32238 esum2dlem 33121 sigaclfu2 33150 sigapildsyslem 33190 fiunelros 33203 bnj548 33939 bnj554 33941 bnj594 33954 neibastop2lem 35293 istotbnd3 36687 0totbnd 36689 sstotbnd2 36690 sstotbnd 36691 sstotbnd3 36692 totbndbnd 36705 prdstotbnd 36710 cntotbnd 36712 heibor 36737 dfrcl4 42475 iunrelexp0 42501 comptiunov2i 42505 corclrcl 42506 cotrcltrcl 42524 trclfvdecomr 42527 dfrtrcl4 42537 corcltrcl 42538 cotrclrcl 42541 fiiuncl 43800 iuneq1i 43822 sge0iunmptlemfi 45177 caragenfiiuncl 45279 carageniuncllem1 45285 ovnsubadd2lem 45409 |
Copyright terms: Public domain | W3C validator |