| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iuneq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998.) |
| Ref | Expression |
|---|---|
| iuneq1 | ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss1 4982 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | iunss1 4982 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) |
| 4 | eqss 3974 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3974 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 ↔ (∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶 ∧ ∪ 𝑥 ∈ 𝐵 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶)) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: iuneq1d 4995 iinvdif 5056 iunxprg 5072 iununi 5075 iunsuc 6439 funopsn 7138 funiunfv 7240 onfununi 8355 iunfi 9355 ttrclselem1 9739 ttrclselem2 9740 rankuni2b 9867 pwsdompw 10217 ackbij1lem7 10239 r1om 10257 fictb 10258 cfsmolem 10284 ituniiun 10436 domtriomlem 10456 domtriom 10457 inar1 10789 fsum2d 15787 fsumiun 15837 ackbijnn 15844 fprod2d 15997 prmreclem5 16940 lpival 21285 fiuncmp 23342 ovolfiniun 25454 ovoliunnul 25460 finiunmbl 25497 volfiniun 25500 voliunlem1 25503 iuninc 32541 ofpreima2 32644 gsumpart 33051 esum2dlem 34123 sigaclfu2 34152 sigapildsyslem 34192 fiunelros 34205 bnj548 34928 bnj554 34930 bnj594 34943 neibastop2lem 36378 istotbnd3 37795 0totbnd 37797 sstotbnd2 37798 sstotbnd 37799 sstotbnd3 37800 totbndbnd 37813 prdstotbnd 37818 cntotbnd 37820 heibor 37845 dfrcl4 43700 iunrelexp0 43726 comptiunov2i 43730 corclrcl 43731 cotrcltrcl 43749 trclfvdecomr 43752 dfrtrcl4 43762 corcltrcl 43763 cotrclrcl 43766 fiiuncl 45089 sge0iunmptlemfi 46442 caragenfiiuncl 46544 carageniuncllem1 46550 ovnsubadd2lem 46674 |
| Copyright terms: Public domain | W3C validator |