Step | Hyp | Ref
| Expression |
1 | | ioof 13420 |
. . . . . . . 8
β’
(,):(β* Γ β*)βΆπ«
β |
2 | 1 | a1i 11 |
. . . . . . 7
β’ (π β (,):(β*
Γ β*)βΆπ« β) |
3 | | ovolval4lem1.f |
. . . . . . 7
β’ (π β πΉ:ββΆ(β* Γ
β*)) |
4 | | fco 6738 |
. . . . . . 7
β’
(((,):(β* Γ β*)βΆπ«
β β§ πΉ:ββΆ(β* Γ
β*)) β ((,) β πΉ):ββΆπ«
β) |
5 | 2, 3, 4 | syl2anc 584 |
. . . . . 6
β’ (π β ((,) β πΉ):ββΆπ«
β) |
6 | 5 | ffnd 6715 |
. . . . 5
β’ (π β ((,) β πΉ) Fn β) |
7 | | fniunfv 7242 |
. . . . 5
β’ (((,)
β πΉ) Fn β
β βͺ π β β (((,) β πΉ)βπ) = βͺ ran ((,)
β πΉ)) |
8 | 6, 7 | syl 17 |
. . . 4
β’ (π β βͺ π β β (((,) β πΉ)βπ) = βͺ ran ((,)
β πΉ)) |
9 | 8 | eqcomd 2738 |
. . 3
β’ (π β βͺ ran ((,) β πΉ) = βͺ
π β β (((,)
β πΉ)βπ)) |
10 | | ovolval4lem1.a |
. . . . . . . . 9
β’ π΄ = {π β β β£ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))} |
11 | | ssrab2 4076 |
. . . . . . . . 9
β’ {π β β β£
(1st β(πΉβπ)) β€ (2nd β(πΉβπ))} β β |
12 | 10, 11 | eqsstri 4015 |
. . . . . . . 8
β’ π΄ β
β |
13 | | undif 4480 |
. . . . . . . 8
β’ (π΄ β β β (π΄ βͺ (β β π΄)) = β) |
14 | 12, 13 | mpbi 229 |
. . . . . . 7
β’ (π΄ βͺ (β β π΄)) = β |
15 | 14 | eqcomi 2741 |
. . . . . 6
β’ β =
(π΄ βͺ (β β
π΄)) |
16 | 15 | iuneq1i 43759 |
. . . . 5
β’ βͺ π β β (((,) β πΉ)βπ) = βͺ π β (π΄ βͺ (β β π΄))(((,) β πΉ)βπ) |
17 | | iunxun 5096 |
. . . . 5
β’ βͺ π β (π΄ βͺ (β β π΄))(((,) β πΉ)βπ) = (βͺ
π β π΄ (((,) β πΉ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΉ)βπ)) |
18 | 16, 17 | eqtri 2760 |
. . . 4
β’ βͺ π β β (((,) β πΉ)βπ) = (βͺ
π β π΄ (((,) β πΉ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΉ)βπ)) |
19 | 18 | a1i 11 |
. . 3
β’ (π β βͺ π β β (((,) β πΉ)βπ) = (βͺ
π β π΄ (((,) β πΉ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΉ)βπ))) |
20 | 3 | ffvelcdmda 7083 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β (πΉβπ) β (β* Γ
β*)) |
21 | | xp1st 8003 |
. . . . . . . . . . 11
β’ ((πΉβπ) β (β* Γ
β*) β (1st β(πΉβπ)) β
β*) |
22 | 20, 21 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β β) β (1st
β(πΉβπ)) β
β*) |
23 | | xp2nd 8004 |
. . . . . . . . . . . 12
β’ ((πΉβπ) β (β* Γ
β*) β (2nd β(πΉβπ)) β
β*) |
24 | 20, 23 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β (2nd
β(πΉβπ)) β
β*) |
25 | 24, 22 | ifcld 4573 |
. . . . . . . . . 10
β’ ((π β§ π β β) β if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ))) β
β*) |
26 | 22, 25 | opelxpd 5713 |
. . . . . . . . 9
β’ ((π β§ π β β) β β¨(1st
β(πΉβπ)), if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ)))β© β
(β* Γ β*)) |
27 | | ovolval4lem1.g |
. . . . . . . . 9
β’ πΊ = (π β β β¦ β¨(1st
β(πΉβπ)), if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ)))β©) |
28 | 26, 27 | fmptd 7110 |
. . . . . . . 8
β’ (π β πΊ:ββΆ(β* Γ
β*)) |
29 | | fco 6738 |
. . . . . . . 8
β’
(((,):(β* Γ β*)βΆπ«
β β§ πΊ:ββΆ(β* Γ
β*)) β ((,) β πΊ):ββΆπ«
β) |
30 | 2, 28, 29 | syl2anc 584 |
. . . . . . 7
β’ (π β ((,) β πΊ):ββΆπ«
β) |
31 | 30 | ffnd 6715 |
. . . . . 6
β’ (π β ((,) β πΊ) Fn β) |
32 | | fniunfv 7242 |
. . . . . 6
β’ (((,)
β πΊ) Fn β
β βͺ π β β (((,) β πΊ)βπ) = βͺ ran ((,)
β πΊ)) |
33 | 31, 32 | syl 17 |
. . . . 5
β’ (π β βͺ π β β (((,) β πΊ)βπ) = βͺ ran ((,)
β πΊ)) |
34 | 33 | eqcomd 2738 |
. . . 4
β’ (π β βͺ ran ((,) β πΊ) = βͺ
π β β (((,)
β πΊ)βπ)) |
35 | 15 | iuneq1i 43759 |
. . . . . 6
β’ βͺ π β β (((,) β πΊ)βπ) = βͺ π β (π΄ βͺ (β β π΄))(((,) β πΊ)βπ) |
36 | | iunxun 5096 |
. . . . . 6
β’ βͺ π β (π΄ βͺ (β β π΄))(((,) β πΊ)βπ) = (βͺ
π β π΄ (((,) β πΊ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΊ)βπ)) |
37 | 35, 36 | eqtri 2760 |
. . . . 5
β’ βͺ π β β (((,) β πΊ)βπ) = (βͺ
π β π΄ (((,) β πΊ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΊ)βπ)) |
38 | 37 | a1i 11 |
. . . 4
β’ (π β βͺ π β β (((,) β πΊ)βπ) = (βͺ
π β π΄ (((,) β πΊ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΊ)βπ))) |
39 | 28 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β π΄) β πΊ:ββΆ(β* Γ
β*)) |
40 | 12 | sseli 3977 |
. . . . . . . . 9
β’ (π β π΄ β π β β) |
41 | 40 | adantl 482 |
. . . . . . . 8
β’ ((π β§ π β π΄) β π β β) |
42 | | fvco3 6987 |
. . . . . . . 8
β’ ((πΊ:ββΆ(β* Γ
β*) β§ π β β) β (((,) β πΊ)βπ) = ((,)β(πΊβπ))) |
43 | 39, 41, 42 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π β π΄) β (((,) β πΊ)βπ) = ((,)β(πΊβπ))) |
44 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β πΉ:ββΆ(β* Γ
β*)) |
45 | | fvco3 6987 |
. . . . . . . . 9
β’ ((πΉ:ββΆ(β* Γ
β*) β§ π β β) β (((,) β πΉ)βπ) = ((,)β(πΉβπ))) |
46 | 44, 41, 45 | syl2anc 584 |
. . . . . . . 8
β’ ((π β§ π β π΄) β (((,) β πΉ)βπ) = ((,)β(πΉβπ))) |
47 | | simpl 483 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β π) |
48 | | 1st2nd2 8010 |
. . . . . . . . . . . 12
β’ ((πΉβπ) β (β* Γ
β*) β (πΉβπ) = β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) |
49 | 20, 48 | syl 17 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β (πΉβπ) = β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) |
50 | 47, 41, 49 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β (πΉβπ) = β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) |
51 | 27 | a1i 11 |
. . . . . . . . . . . . 13
β’ (π β πΊ = (π β β β¦ β¨(1st
β(πΉβπ)), if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ)))β©)) |
52 | 26 | elexd 3494 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β) β β¨(1st
β(πΉβπ)), if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ)))β© β
V) |
53 | 51, 52 | fvmpt2d 7008 |
. . . . . . . . . . . 12
β’ ((π β§ π β β) β (πΊβπ) = β¨(1st β(πΉβπ)), if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ)))β©) |
54 | 47, 41, 53 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β (πΊβπ) = β¨(1st β(πΉβπ)), if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ)))β©) |
55 | 10 | eleq2i 2825 |
. . . . . . . . . . . . . . . . 17
β’ (π β π΄ β π β {π β β β£ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))}) |
56 | 55 | biimpi 215 |
. . . . . . . . . . . . . . . 16
β’ (π β π΄ β π β {π β β β£ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))}) |
57 | | rabid 3452 |
. . . . . . . . . . . . . . . 16
β’ (π β {π β β β£ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))} β (π β β β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)))) |
58 | 56, 57 | sylib 217 |
. . . . . . . . . . . . . . 15
β’ (π β π΄ β (π β β β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)))) |
59 | 58 | simprd 496 |
. . . . . . . . . . . . . 14
β’ (π β π΄ β (1st β(πΉβπ)) β€ (2nd β(πΉβπ))) |
60 | 59 | adantl 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π΄) β (1st β(πΉβπ)) β€ (2nd β(πΉβπ))) |
61 | 60 | iftrued 4535 |
. . . . . . . . . . . 12
β’ ((π β§ π β π΄) β if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ))) = (2nd β(πΉβπ))) |
62 | 61 | opeq2d 4879 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β β¨(1st β(πΉβπ)), if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ)))β© = β¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©) |
63 | | eqidd 2733 |
. . . . . . . . . . 11
β’ ((π β§ π β π΄) β β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β© = β¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©) |
64 | 54, 62, 63 | 3eqtrd 2776 |
. . . . . . . . . 10
β’ ((π β§ π β π΄) β (πΊβπ) = β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) |
65 | 50, 64 | eqtr4d 2775 |
. . . . . . . . 9
β’ ((π β§ π β π΄) β (πΉβπ) = (πΊβπ)) |
66 | 65 | fveq2d 6892 |
. . . . . . . 8
β’ ((π β§ π β π΄) β ((,)β(πΉβπ)) = ((,)β(πΊβπ))) |
67 | 46, 66 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π β π΄) β (((,) β πΉ)βπ) = ((,)β(πΊβπ))) |
68 | 43, 67 | eqtr4d 2775 |
. . . . . 6
β’ ((π β§ π β π΄) β (((,) β πΊ)βπ) = (((,) β πΉ)βπ)) |
69 | 68 | iuneq2dv 5020 |
. . . . 5
β’ (π β βͺ π β π΄ (((,) β πΊ)βπ) = βͺ π β π΄ (((,) β πΉ)βπ)) |
70 | 28 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β πΊ:ββΆ(β* Γ
β*)) |
71 | | eldifi 4125 |
. . . . . . . . . . 11
β’ (π β (β β π΄) β π β β) |
72 | 71 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β π β β) |
73 | 70, 72, 42 | syl2anc 584 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β (((,) β πΊ)βπ) = ((,)β(πΊβπ))) |
74 | | simpl 483 |
. . . . . . . . . . . 12
β’ ((π β§ π β (β β π΄)) β π) |
75 | 74, 72, 53 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β§ π β (β β π΄)) β (πΊβπ) = β¨(1st β(πΉβπ)), if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ)))β©) |
76 | 71 | anim1i 615 |
. . . . . . . . . . . . . . . . 17
β’ ((π β (β β π΄) β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))) β (π β β β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)))) |
77 | 76, 57 | sylibr 233 |
. . . . . . . . . . . . . . . 16
β’ ((π β (β β π΄) β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))) β π β {π β β β£ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))}) |
78 | 77, 55 | sylibr 233 |
. . . . . . . . . . . . . . 15
β’ ((π β (β β π΄) β§ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))) β π β π΄) |
79 | 78 | adantll 712 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β (β β π΄)) β§ (1st β(πΉβπ)) β€ (2nd β(πΉβπ))) β π β π΄) |
80 | | eldifn 4126 |
. . . . . . . . . . . . . . 15
β’ (π β (β β π΄) β Β¬ π β π΄) |
81 | 80 | ad2antlr 725 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β (β β π΄)) β§ (1st β(πΉβπ)) β€ (2nd β(πΉβπ))) β Β¬ π β π΄) |
82 | 79, 81 | pm2.65da 815 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (β β π΄)) β Β¬ (1st
β(πΉβπ)) β€ (2nd
β(πΉβπ))) |
83 | 82 | iffalsed 4538 |
. . . . . . . . . . . 12
β’ ((π β§ π β (β β π΄)) β if((1st β(πΉβπ)) β€ (2nd β(πΉβπ)), (2nd β(πΉβπ)), (1st β(πΉβπ))) = (1st β(πΉβπ))) |
84 | 83 | opeq2d 4879 |
. . . . . . . . . . 11
β’ ((π β§ π β (β β π΄)) β β¨(1st
β(πΉβπ)), if((1st
β(πΉβπ)) β€ (2nd
β(πΉβπ)), (2nd
β(πΉβπ)), (1st
β(πΉβπ)))β© =
β¨(1st β(πΉβπ)), (1st β(πΉβπ))β©) |
85 | 75, 84 | eqtrd 2772 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β (πΊβπ) = β¨(1st β(πΉβπ)), (1st β(πΉβπ))β©) |
86 | 85 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β ((,)β(πΊβπ)) = ((,)ββ¨(1st
β(πΉβπ)), (1st
β(πΉβπ))β©)) |
87 | | iooid 13348 |
. . . . . . . . . . . 12
β’
((1st β(πΉβπ))(,)(1st β(πΉβπ))) = β
|
88 | 87 | eqcomi 2741 |
. . . . . . . . . . 11
β’ β
=
((1st β(πΉβπ))(,)(1st β(πΉβπ))) |
89 | | df-ov 7408 |
. . . . . . . . . . 11
β’
((1st β(πΉβπ))(,)(1st β(πΉβπ))) = ((,)ββ¨(1st
β(πΉβπ)), (1st
β(πΉβπ))β©) |
90 | 88, 89 | eqtr2i 2761 |
. . . . . . . . . 10
β’
((,)ββ¨(1st β(πΉβπ)), (1st β(πΉβπ))β©) = β
|
91 | 90 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β ((,)ββ¨(1st
β(πΉβπ)), (1st
β(πΉβπ))β©) =
β
) |
92 | 73, 86, 91 | 3eqtrd 2776 |
. . . . . . . 8
β’ ((π β§ π β (β β π΄)) β (((,) β πΊ)βπ) = β
) |
93 | 92 | iuneq2dv 5020 |
. . . . . . 7
β’ (π β βͺ π β (β β π΄)(((,) β πΊ)βπ) = βͺ π β (β β π΄)β
) |
94 | | iun0 5064 |
. . . . . . . 8
β’ βͺ π β (β β π΄)β
= β
|
95 | 94 | a1i 11 |
. . . . . . 7
β’ (π β βͺ π β (β β π΄)β
= β
) |
96 | 93, 95 | eqtrd 2772 |
. . . . . 6
β’ (π β βͺ π β (β β π΄)(((,) β πΊ)βπ) = β
) |
97 | 74, 3 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β πΉ:ββΆ(β* Γ
β*)) |
98 | 97, 72, 45 | syl2anc 584 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β (((,) β πΉ)βπ) = ((,)β(πΉβπ))) |
99 | 74, 72, 49 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β (πΉβπ) = β¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) |
100 | 99 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β ((,)β(πΉβπ)) = ((,)ββ¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©)) |
101 | | df-ov 7408 |
. . . . . . . . . . 11
β’
((1st β(πΉβπ))(,)(2nd β(πΉβπ))) = ((,)ββ¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©) |
102 | 101 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β ((1st β(πΉβπ))(,)(2nd β(πΉβπ))) = ((,)ββ¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©)) |
103 | | simplr 767 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β π β (β β π΄)) |
104 | 72, 22 | syldan 591 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (β β π΄)) β (1st β(πΉβπ)) β
β*) |
105 | 104 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β (1st β(πΉβπ)) β
β*) |
106 | 72, 24 | syldan 591 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β (β β π΄)) β (2nd β(πΉβπ)) β
β*) |
107 | 106 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β (2nd β(πΉβπ)) β
β*) |
108 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β Β¬ (2nd
β(πΉβπ)) β€ (1st
β(πΉβπ))) |
109 | 105, 107 | xrltnled 44059 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β ((1st β(πΉβπ)) < (2nd β(πΉβπ)) β Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ)))) |
110 | 108, 109 | mpbird 256 |
. . . . . . . . . . . . . 14
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β (1st β(πΉβπ)) < (2nd β(πΉβπ))) |
111 | 105, 107,
110 | xrltled 13125 |
. . . . . . . . . . . . 13
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β (1st β(πΉβπ)) β€ (2nd β(πΉβπ))) |
112 | 103, 111,
78 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β π β π΄) |
113 | 80 | ad2antlr 725 |
. . . . . . . . . . . 12
β’ (((π β§ π β (β β π΄)) β§ Β¬ (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) β Β¬ π β π΄) |
114 | 112, 113 | condan 816 |
. . . . . . . . . . 11
β’ ((π β§ π β (β β π΄)) β (2nd β(πΉβπ)) β€ (1st β(πΉβπ))) |
115 | | ioo0 13345 |
. . . . . . . . . . . 12
β’
(((1st β(πΉβπ)) β β* β§
(2nd β(πΉβπ)) β β*) β
(((1st β(πΉβπ))(,)(2nd β(πΉβπ))) = β
β (2nd
β(πΉβπ)) β€ (1st
β(πΉβπ)))) |
116 | 104, 106,
115 | syl2anc 584 |
. . . . . . . . . . 11
β’ ((π β§ π β (β β π΄)) β (((1st β(πΉβπ))(,)(2nd β(πΉβπ))) = β
β (2nd
β(πΉβπ)) β€ (1st
β(πΉβπ)))) |
117 | 114, 116 | mpbird 256 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β ((1st β(πΉβπ))(,)(2nd β(πΉβπ))) = β
) |
118 | 102, 117 | eqtr3d 2774 |
. . . . . . . . 9
β’ ((π β§ π β (β β π΄)) β ((,)ββ¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©) =
β
) |
119 | 98, 100, 118 | 3eqtrd 2776 |
. . . . . . . 8
β’ ((π β§ π β (β β π΄)) β (((,) β πΉ)βπ) = β
) |
120 | 119 | iuneq2dv 5020 |
. . . . . . 7
β’ (π β βͺ π β (β β π΄)(((,) β πΉ)βπ) = βͺ π β (β β π΄)β
) |
121 | 120, 95 | eqtrd 2772 |
. . . . . 6
β’ (π β βͺ π β (β β π΄)(((,) β πΉ)βπ) = β
) |
122 | 96, 121 | eqtr4d 2775 |
. . . . 5
β’ (π β βͺ π β (β β π΄)(((,) β πΊ)βπ) = βͺ π β (β β π΄)(((,) β πΉ)βπ)) |
123 | 69, 122 | uneq12d 4163 |
. . . 4
β’ (π β (βͺ π β π΄ (((,) β πΊ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΊ)βπ)) = (βͺ
π β π΄ (((,) β πΉ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΉ)βπ))) |
124 | 34, 38, 123 | 3eqtrrd 2777 |
. . 3
β’ (π β (βͺ π β π΄ (((,) β πΉ)βπ) βͺ βͺ
π β (β β
π΄)(((,) β πΉ)βπ)) = βͺ ran ((,)
β πΊ)) |
125 | 9, 19, 124 | 3eqtrd 2776 |
. 2
β’ (π β βͺ ran ((,) β πΉ) = βͺ ran ((,)
β πΊ)) |
126 | | volf 25037 |
. . . . . 6
β’ vol:dom
volβΆ(0[,]+β) |
127 | 126 | a1i 11 |
. . . . 5
β’ (π β vol:dom
volβΆ(0[,]+β)) |
128 | 3 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β πΉ:ββΆ(β* Γ
β*)) |
129 | | simpr 485 |
. . . . . . . . . . 11
β’ ((π β§ π β β) β π β β) |
130 | 128, 129,
45 | syl2anc 584 |
. . . . . . . . . 10
β’ ((π β§ π β β) β (((,) β πΉ)βπ) = ((,)β(πΉβπ))) |
131 | 49 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π β§ π β β) β ((,)β(πΉβπ)) = ((,)ββ¨(1st
β(πΉβπ)), (2nd
β(πΉβπ))β©)) |
132 | 101 | eqcomi 2741 |
. . . . . . . . . . 11
β’
((,)ββ¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) = ((1st β(πΉβπ))(,)(2nd β(πΉβπ))) |
133 | 132 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π β β) β
((,)ββ¨(1st β(πΉβπ)), (2nd β(πΉβπ))β©) = ((1st β(πΉβπ))(,)(2nd β(πΉβπ)))) |
134 | 130, 131,
133 | 3eqtrd 2776 |
. . . . . . . . 9
β’ ((π β§ π β β) β (((,) β πΉ)βπ) = ((1st β(πΉβπ))(,)(2nd β(πΉβπ)))) |
135 | | ioombl 25073 |
. . . . . . . . . 10
β’
((1st β(πΉβπ))(,)(2nd β(πΉβπ))) β dom vol |
136 | 135 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β β) β ((1st
β(πΉβπ))(,)(2nd
β(πΉβπ))) β dom
vol) |
137 | 134, 136 | eqeltrd 2833 |
. . . . . . . 8
β’ ((π β§ π β β) β (((,) β πΉ)βπ) β dom vol) |
138 | 137 | ralrimiva 3146 |
. . . . . . 7
β’ (π β βπ β β (((,) β πΉ)βπ) β dom vol) |
139 | 6, 138 | jca 512 |
. . . . . 6
β’ (π β (((,) β πΉ) Fn β β§ βπ β β (((,) β
πΉ)βπ) β dom vol)) |
140 | | ffnfv 7114 |
. . . . . 6
β’ (((,)
β πΉ):ββΆdom vol β (((,)
β πΉ) Fn β β§
βπ β β
(((,) β πΉ)βπ) β dom vol)) |
141 | 139, 140 | sylibr 233 |
. . . . 5
β’ (π β ((,) β πΉ):ββΆdom
vol) |
142 | | fco 6738 |
. . . . 5
β’ ((vol:dom
volβΆ(0[,]+β) β§ ((,) β πΉ):ββΆdom vol) β (vol
β ((,) β πΉ)):ββΆ(0[,]+β)) |
143 | 127, 141,
142 | syl2anc 584 |
. . . 4
β’ (π β (vol β ((,) β
πΉ)):ββΆ(0[,]+β)) |
144 | 143 | ffnd 6715 |
. . 3
β’ (π β (vol β ((,) β
πΉ)) Fn
β) |
145 | 68 | adantlr 713 |
. . . . . . . . . 10
β’ (((π β§ π β β) β§ π β π΄) β (((,) β πΊ)βπ) = (((,) β πΉ)βπ)) |
146 | 137 | adantr 481 |
. . . . . . . . . 10
β’ (((π β§ π β β) β§ π β π΄) β (((,) β πΉ)βπ) β dom vol) |
147 | 145, 146 | eqeltrd 2833 |
. . . . . . . . 9
β’ (((π β§ π β β) β§ π β π΄) β (((,) β πΊ)βπ) β dom vol) |
148 | | simpll 765 |
. . . . . . . . . 10
β’ (((π β§ π β β) β§ Β¬ π β π΄) β π) |
149 | | eldif 3957 |
. . . . . . . . . . . . 13
β’ (π β (β β π΄) β (π β β β§ Β¬ π β π΄)) |
150 | 149 | bicomi 223 |
. . . . . . . . . . . 12
β’ ((π β β β§ Β¬
π β π΄) β π β (β β π΄)) |
151 | 150 | biimpi 215 |
. . . . . . . . . . 11
β’ ((π β β β§ Β¬
π β π΄) β π β (β β π΄)) |
152 | 151 | adantll 712 |
. . . . . . . . . 10
β’ (((π β§ π β β) β§ Β¬ π β π΄) β π β (β β π΄)) |
153 | 117, 135 | eqeltrrdi 2842 |
. . . . . . . . . . 11
β’ ((π β§ π β (β β π΄)) β β
β dom
vol) |
154 | 92, 153 | eqeltrd 2833 |
. . . . . . . . . 10
β’ ((π β§ π β (β β π΄)) β (((,) β πΊ)βπ) β dom vol) |
155 | 148, 152,
154 | syl2anc 584 |
. . . . . . . . 9
β’ (((π β§ π β β) β§ Β¬ π β π΄) β (((,) β πΊ)βπ) β dom vol) |
156 | 147, 155 | pm2.61dan 811 |
. . . . . . . 8
β’ ((π β§ π β β) β (((,) β πΊ)βπ) β dom vol) |
157 | 156 | ralrimiva 3146 |
. . . . . . 7
β’ (π β βπ β β (((,) β πΊ)βπ) β dom vol) |
158 | 31, 157 | jca 512 |
. . . . . 6
β’ (π β (((,) β πΊ) Fn β β§ βπ β β (((,) β
πΊ)βπ) β dom vol)) |
159 | | ffnfv 7114 |
. . . . . 6
β’ (((,)
β πΊ):ββΆdom vol β (((,)
β πΊ) Fn β β§
βπ β β
(((,) β πΊ)βπ) β dom vol)) |
160 | 158, 159 | sylibr 233 |
. . . . 5
β’ (π β ((,) β πΊ):ββΆdom
vol) |
161 | | fco 6738 |
. . . . 5
β’ ((vol:dom
volβΆ(0[,]+β) β§ ((,) β πΊ):ββΆdom vol) β (vol
β ((,) β πΊ)):ββΆ(0[,]+β)) |
162 | 127, 160,
161 | syl2anc 584 |
. . . 4
β’ (π β (vol β ((,) β
πΊ)):ββΆ(0[,]+β)) |
163 | 162 | ffnd 6715 |
. . 3
β’ (π β (vol β ((,) β
πΊ)) Fn
β) |
164 | 145 | eqcomd 2738 |
. . . . . 6
β’ (((π β§ π β β) β§ π β π΄) β (((,) β πΉ)βπ) = (((,) β πΊ)βπ)) |
165 | 119, 92 | eqtr4d 2775 |
. . . . . . 7
β’ ((π β§ π β (β β π΄)) β (((,) β πΉ)βπ) = (((,) β πΊ)βπ)) |
166 | 148, 152,
165 | syl2anc 584 |
. . . . . 6
β’ (((π β§ π β β) β§ Β¬ π β π΄) β (((,) β πΉ)βπ) = (((,) β πΊ)βπ)) |
167 | 164, 166 | pm2.61dan 811 |
. . . . 5
β’ ((π β§ π β β) β (((,) β πΉ)βπ) = (((,) β πΊ)βπ)) |
168 | 167 | fveq2d 6892 |
. . . 4
β’ ((π β§ π β β) β (volβ(((,)
β πΉ)βπ)) = (volβ(((,) β
πΊ)βπ))) |
169 | | fnfun 6646 |
. . . . . . 7
β’ (((,)
β πΉ) Fn β
β Fun ((,) β πΉ)) |
170 | 6, 169 | syl 17 |
. . . . . 6
β’ (π β Fun ((,) β πΉ)) |
171 | 170 | adantr 481 |
. . . . 5
β’ ((π β§ π β β) β Fun ((,) β
πΉ)) |
172 | 5 | fdmd 6725 |
. . . . . . . 8
β’ (π β dom ((,) β πΉ) = β) |
173 | 172 | eqcomd 2738 |
. . . . . . 7
β’ (π β β = dom ((,) β
πΉ)) |
174 | 173 | adantr 481 |
. . . . . 6
β’ ((π β§ π β β) β β = dom ((,)
β πΉ)) |
175 | 129, 174 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ π β β) β π β dom ((,) β πΉ)) |
176 | | fvco 6986 |
. . . . 5
β’ ((Fun
((,) β πΉ) β§ π β dom ((,) β πΉ)) β ((vol β ((,)
β πΉ))βπ) = (volβ(((,) β
πΉ)βπ))) |
177 | 171, 175,
176 | syl2anc 584 |
. . . 4
β’ ((π β§ π β β) β ((vol β ((,)
β πΉ))βπ) = (volβ(((,) β
πΉ)βπ))) |
178 | | fnfun 6646 |
. . . . . . 7
β’ (((,)
β πΊ) Fn β
β Fun ((,) β πΊ)) |
179 | 31, 178 | syl 17 |
. . . . . 6
β’ (π β Fun ((,) β πΊ)) |
180 | 179 | adantr 481 |
. . . . 5
β’ ((π β§ π β β) β Fun ((,) β
πΊ)) |
181 | 30 | fdmd 6725 |
. . . . . . . 8
β’ (π β dom ((,) β πΊ) = β) |
182 | 181 | eqcomd 2738 |
. . . . . . 7
β’ (π β β = dom ((,) β
πΊ)) |
183 | 182 | adantr 481 |
. . . . . 6
β’ ((π β§ π β β) β β = dom ((,)
β πΊ)) |
184 | 129, 183 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ π β β) β π β dom ((,) β πΊ)) |
185 | | fvco 6986 |
. . . . 5
β’ ((Fun
((,) β πΊ) β§ π β dom ((,) β πΊ)) β ((vol β ((,)
β πΊ))βπ) = (volβ(((,) β
πΊ)βπ))) |
186 | 180, 184,
185 | syl2anc 584 |
. . . 4
β’ ((π β§ π β β) β ((vol β ((,)
β πΊ))βπ) = (volβ(((,) β
πΊ)βπ))) |
187 | 168, 177,
186 | 3eqtr4d 2782 |
. . 3
β’ ((π β§ π β β) β ((vol β ((,)
β πΉ))βπ) = ((vol β ((,) β
πΊ))βπ)) |
188 | 144, 163,
187 | eqfnfvd 7032 |
. 2
β’ (π β (vol β ((,) β
πΉ)) = (vol β ((,)
β πΊ))) |
189 | 125, 188 | jca 512 |
1
β’ (π β (βͺ ran ((,) β πΉ) = βͺ ran ((,)
β πΊ) β§ (vol
β ((,) β πΉ)) =
(vol β ((,) β πΊ)))) |