Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem1 Structured version   Visualization version   GIF version

Theorem ovolval4lem1 46647
Description: |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem1.f (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
ovolval4lem1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
ovolval4lem1.a 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
Assertion
Ref Expression
ovolval4lem1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolval4lem1
StepHypRef Expression
1 ioof 13408 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
21a1i 11 . . . . . . 7 (𝜑 → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
3 ovolval4lem1.f . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
4 fco 6712 . . . . . . 7 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
52, 3, 4syl2anc 584 . . . . . 6 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
65ffnd 6689 . . . . 5 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
7 fniunfv 7221 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
86, 7syl 17 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
98eqcomd 2735 . . 3 (𝜑 ran ((,) ∘ 𝐹) = 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
10 ovolval4lem1.a . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
11 ssrab2 4043 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ⊆ ℕ
1210, 11eqsstri 3993 . . . . . . . 8 𝐴 ⊆ ℕ
13 undif 4445 . . . . . . . 8 (𝐴 ⊆ ℕ ↔ (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ)
1412, 13mpbi 230 . . . . . . 7 (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ
1514eqcomi 2738 . . . . . 6 ℕ = (𝐴 ∪ (ℕ ∖ 𝐴))
1615iuneq1i 45079 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛)
17 iunxun 5058 . . . . 5 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1816, 17eqtri 2752 . . . 4 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1918a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
203ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ* × ℝ*))
21 xp1st 8000 . . . . . . . . . . 11 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
23 xp2nd 8001 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2420, 23syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2524, 22ifcld 4535 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) ∈ ℝ*)
2622, 25opelxpd 5677 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ (ℝ* × ℝ*))
27 ovolval4lem1.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
2826, 27fmptd 7086 . . . . . . . 8 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
29 fco 6712 . . . . . . . 8 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
302, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
3130ffnd 6689 . . . . . 6 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
32 fniunfv 7221 . . . . . 6 (((,) ∘ 𝐺) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3331, 32syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3433eqcomd 2735 . . . 4 (𝜑 ran ((,) ∘ 𝐺) = 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛))
3515iuneq1i 45079 . . . . . 6 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛)
36 iunxun 5058 . . . . . 6 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3735, 36eqtri 2752 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3837a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)))
3928adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐺:ℕ⟶(ℝ* × ℝ*))
4012sseli 3942 . . . . . . . . 9 (𝑛𝐴𝑛 ∈ ℕ)
4140adantl 481 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℕ)
42 fvco3 6960 . . . . . . . 8 ((𝐺:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
4339, 41, 42syl2anc 584 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
443adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → 𝐹:ℕ⟶(ℝ* × ℝ*))
45 fvco3 6960 . . . . . . . . 9 ((𝐹:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
4644, 41, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
47 simpl 482 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝜑)
48 1st2nd2 8007 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
4920, 48syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5047, 41, 49syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5127a1i 11 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩))
5226elexd 3471 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ V)
5351, 52fvmpt2d 6981 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5447, 41, 53syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5510eleq2i 2820 . . . . . . . . . . . . . . . . 17 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
5655biimpi 216 . . . . . . . . . . . . . . . 16 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
57 rabid 3427 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ↔ (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5856, 57sylib 218 . . . . . . . . . . . . . . 15 (𝑛𝐴 → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5958simprd 495 . . . . . . . . . . . . . 14 (𝑛𝐴 → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6059adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝐴) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6160iftrued 4496 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (2nd ‘(𝐹𝑛)))
6261opeq2d 4844 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
63 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6454, 62, 633eqtrd 2768 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6550, 64eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐹𝑛) = (𝐺𝑛))
6665fveq2d 6862 . . . . . . . 8 ((𝜑𝑛𝐴) → ((,)‘(𝐹𝑛)) = ((,)‘(𝐺𝑛)))
6746, 66eqtrd 2764 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐺𝑛)))
6843, 67eqtr4d 2767 . . . . . 6 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
6968iuneq2dv 4980 . . . . 5 (𝜑 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) = 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛))
7028adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
71 eldifi 4094 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ 𝐴) → 𝑛 ∈ ℕ)
7271adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝑛 ∈ ℕ)
7370, 72, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
74 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝜑)
7574, 72, 53syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
7671anim1i 615 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
7776, 57sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
7877, 55sylibr 234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
7978adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
80 eldifn 4095 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ 𝐴) → ¬ 𝑛𝐴)
8180ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
8279, 81pm2.65da 816 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ¬ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
8382iffalsed 4499 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (1st ‘(𝐹𝑛)))
8483opeq2d 4844 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8575, 84eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8685fveq2d 6862 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐺𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩))
87 iooid 13334 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ∅
8887eqcomi 2738 . . . . . . . . . . 11 ∅ = ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛)))
89 df-ov 7390 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
9088, 89eqtr2i 2753 . . . . . . . . . 10 ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅
9190a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅)
9273, 86, 913eqtrd 2768 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ∅)
9392iuneq2dv 4980 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
94 iun0 5026 . . . . . . . 8 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅
9594a1i 11 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅)
9693, 95eqtrd 2764 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∅)
9774, 3syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
9897, 72, 45syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9974, 72, 49syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10099fveq2d 6862 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
101 df-ov 7390 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛 ∈ (ℕ ∖ 𝐴))
10472, 22syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
105104adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
10672, 24syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
107106adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
108 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
109105, 107xrltnled 45359 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ((1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)) ↔ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
110108, 109mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)))
111105, 107, 110xrltled 13110 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
112103, 111, 78syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛𝐴)
11380ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
114112, 113condan 817 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
115 ioo0 13331 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
116104, 106, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
117114, 116mpbird 257 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅)
118102, 117eqtr3d 2766 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ∅)
11998, 100, 1183eqtrd 2768 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ∅)
120119iuneq2dv 4980 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
121120, 95eqtrd 2764 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = ∅)
12296, 121eqtr4d 2767 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
12369, 122uneq12d 4132 . . . 4 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
12434, 38, 1233eqtrrd 2769 . . 3 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)) = ran ((,) ∘ 𝐺))
1259, 19, 1243eqtrd 2768 . 2 (𝜑 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺))
126 volf 25430 . . . . . 6 vol:dom vol⟶(0[,]+∞)
127126a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
1283adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
129 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
130128, 129, 45syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
13149fveq2d 6862 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
132101eqcomi 2738 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))
133132a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
134130, 131, 1333eqtrd 2768 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
135 ioombl 25466 . . . . . . . . . 10 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
136135a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol)
137134, 136eqeltrd 2828 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
138137ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
1396, 138jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
140 ffnfv 7091 . . . . . 6 (((,) ∘ 𝐹):ℕ⟶dom vol ↔ (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
141139, 140sylibr 234 . . . . 5 (𝜑 → ((,) ∘ 𝐹):ℕ⟶dom vol)
142 fco 6712 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐹):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
143127, 141, 142syl2anc 584 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
144143ffnd 6689 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) Fn ℕ)
14568adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
146137adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
147145, 146eqeltrd 2828 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
148 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝜑)
149 eldif 3924 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ 𝐴) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴))
150149bicomi 224 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) ↔ 𝑛 ∈ (ℕ ∖ 𝐴))
151150biimpi 216 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
152151adantll 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
153117, 135eqeltrrdi 2837 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ∅ ∈ dom vol)
15492, 153eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
155148, 152, 154syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
156147, 155pm2.61dan 812 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
157156ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
15831, 157jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
159 ffnfv 7091 . . . . . 6 (((,) ∘ 𝐺):ℕ⟶dom vol ↔ (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
160158, 159sylibr 234 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶dom vol)
161 fco 6712 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐺):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
162127, 160, 161syl2anc 584 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
163162ffnd 6689 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐺)) Fn ℕ)
164145eqcomd 2735 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
165119, 92eqtr4d 2767 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
166148, 152, 165syl2anc 584 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
167164, 166pm2.61dan 812 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
168167fveq2d 6862 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(((,) ∘ 𝐹)‘𝑛)) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
169 fnfun 6618 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → Fun ((,) ∘ 𝐹))
1706, 169syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐹))
171170adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐹))
1725fdmd 6698 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐹) = ℕ)
173172eqcomd 2735 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐹))
174173adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐹))
175129, 174eleqtrd 2830 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐹))
176 fvco 6959 . . . . 5 ((Fun ((,) ∘ 𝐹) ∧ 𝑛 ∈ dom ((,) ∘ 𝐹)) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
177171, 175, 176syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
178 fnfun 6618 . . . . . . 7 (((,) ∘ 𝐺) Fn ℕ → Fun ((,) ∘ 𝐺))
17931, 178syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐺))
180179adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐺))
18130fdmd 6698 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐺) = ℕ)
182181eqcomd 2735 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐺))
183182adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐺))
184129, 183eleqtrd 2830 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐺))
185 fvco 6959 . . . . 5 ((Fun ((,) ∘ 𝐺) ∧ 𝑛 ∈ dom ((,) ∘ 𝐺)) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
186180, 184, 185syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
187168, 177, 1863eqtr4d 2774 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = ((vol ∘ ((,) ∘ 𝐺))‘𝑛))
188144, 163, 187eqfnfvd 7006 . 2 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺)))
189125, 188jca 511 1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  cop 4595   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188   × cxp 5636  dom cdm 5638  ran crn 5639  ccom 5642  Fun wfun 6505   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  cr 11067  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cn 12186  (,)cioo 13306  [,]cicc 13309  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xadd 13073  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-xmet 21257  df-met 21258  df-ovol 25365  df-vol 25366
This theorem is referenced by:  ovolval4lem2  46648
  Copyright terms: Public domain W3C validator