Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem1 Structured version   Visualization version   GIF version

Theorem ovolval4lem1 44077
Description: |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem1.f (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
ovolval4lem1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
ovolval4lem1.a 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
Assertion
Ref Expression
ovolval4lem1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolval4lem1
StepHypRef Expression
1 ioof 13108 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
21a1i 11 . . . . . . 7 (𝜑 → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
3 ovolval4lem1.f . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
4 fco 6608 . . . . . . 7 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
52, 3, 4syl2anc 583 . . . . . 6 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
65ffnd 6585 . . . . 5 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
7 fniunfv 7102 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
86, 7syl 17 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
98eqcomd 2744 . . 3 (𝜑 ran ((,) ∘ 𝐹) = 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
10 ovolval4lem1.a . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
11 ssrab2 4009 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ⊆ ℕ
1210, 11eqsstri 3951 . . . . . . . 8 𝐴 ⊆ ℕ
13 undif 4412 . . . . . . . 8 (𝐴 ⊆ ℕ ↔ (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ)
1412, 13mpbi 229 . . . . . . 7 (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ
1514eqcomi 2747 . . . . . 6 ℕ = (𝐴 ∪ (ℕ ∖ 𝐴))
1615iuneq1i 42524 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛)
17 iunxun 5019 . . . . 5 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1816, 17eqtri 2766 . . . 4 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1918a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
203ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ* × ℝ*))
21 xp1st 7836 . . . . . . . . . . 11 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
23 xp2nd 7837 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2420, 23syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2524, 22ifcld 4502 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) ∈ ℝ*)
2622, 25opelxpd 5618 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ (ℝ* × ℝ*))
27 ovolval4lem1.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
2826, 27fmptd 6970 . . . . . . . 8 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
29 fco 6608 . . . . . . . 8 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
302, 28, 29syl2anc 583 . . . . . . 7 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
3130ffnd 6585 . . . . . 6 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
32 fniunfv 7102 . . . . . 6 (((,) ∘ 𝐺) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3331, 32syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3433eqcomd 2744 . . . 4 (𝜑 ran ((,) ∘ 𝐺) = 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛))
3515iuneq1i 42524 . . . . . 6 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛)
36 iunxun 5019 . . . . . 6 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3735, 36eqtri 2766 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3837a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)))
3928adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐺:ℕ⟶(ℝ* × ℝ*))
4012sseli 3913 . . . . . . . . 9 (𝑛𝐴𝑛 ∈ ℕ)
4140adantl 481 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℕ)
42 fvco3 6849 . . . . . . . 8 ((𝐺:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
4339, 41, 42syl2anc 583 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
443adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → 𝐹:ℕ⟶(ℝ* × ℝ*))
45 fvco3 6849 . . . . . . . . 9 ((𝐹:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
4644, 41, 45syl2anc 583 . . . . . . . 8 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
47 simpl 482 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝜑)
48 1st2nd2 7843 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
4920, 48syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5047, 41, 49syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5127a1i 11 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩))
5226elexd 3442 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ V)
5351, 52fvmpt2d 6870 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5447, 41, 53syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5510eleq2i 2830 . . . . . . . . . . . . . . . . 17 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
5655biimpi 215 . . . . . . . . . . . . . . . 16 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
57 rabid 3304 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ↔ (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5856, 57sylib 217 . . . . . . . . . . . . . . 15 (𝑛𝐴 → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5958simprd 495 . . . . . . . . . . . . . 14 (𝑛𝐴 → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6059adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝐴) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6160iftrued 4464 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (2nd ‘(𝐹𝑛)))
6261opeq2d 4808 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
63 eqidd 2739 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6454, 62, 633eqtrd 2782 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6550, 64eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐹𝑛) = (𝐺𝑛))
6665fveq2d 6760 . . . . . . . 8 ((𝜑𝑛𝐴) → ((,)‘(𝐹𝑛)) = ((,)‘(𝐺𝑛)))
6746, 66eqtrd 2778 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐺𝑛)))
6843, 67eqtr4d 2781 . . . . . 6 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
6968iuneq2dv 4945 . . . . 5 (𝜑 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) = 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛))
7028adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
71 eldifi 4057 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ 𝐴) → 𝑛 ∈ ℕ)
7271adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝑛 ∈ ℕ)
7370, 72, 42syl2anc 583 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
74 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝜑)
7574, 72, 53syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
7671anim1i 614 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
7776, 57sylibr 233 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
7877, 55sylibr 233 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
7978adantll 710 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
80 eldifn 4058 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ 𝐴) → ¬ 𝑛𝐴)
8180ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
8279, 81pm2.65da 813 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ¬ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
8382iffalsed 4467 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (1st ‘(𝐹𝑛)))
8483opeq2d 4808 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8575, 84eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8685fveq2d 6760 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐺𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩))
87 iooid 13036 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ∅
8887eqcomi 2747 . . . . . . . . . . 11 ∅ = ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛)))
89 df-ov 7258 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
9088, 89eqtr2i 2767 . . . . . . . . . 10 ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅
9190a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅)
9273, 86, 913eqtrd 2782 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ∅)
9392iuneq2dv 4945 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
94 iun0 4987 . . . . . . . 8 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅
9594a1i 11 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅)
9693, 95eqtrd 2778 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∅)
9774, 3syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
9897, 72, 45syl2anc 583 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9974, 72, 49syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10099fveq2d 6760 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
101 df-ov 7258 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 simplr 765 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛 ∈ (ℕ ∖ 𝐴))
10472, 22syldan 590 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
105104adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
10672, 24syldan 590 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
107106adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
108 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
109105, 107xrltnled 42792 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ((1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)) ↔ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
110108, 109mpbird 256 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)))
111105, 107, 110xrltled 12813 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
112103, 111, 78syl2anc 583 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛𝐴)
11380ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
114112, 113condan 814 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
115 ioo0 13033 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
116104, 106, 115syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
117114, 116mpbird 256 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅)
118102, 117eqtr3d 2780 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ∅)
11998, 100, 1183eqtrd 2782 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ∅)
120119iuneq2dv 4945 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
121120, 95eqtrd 2778 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = ∅)
12296, 121eqtr4d 2781 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
12369, 122uneq12d 4094 . . . 4 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
12434, 38, 1233eqtrrd 2783 . . 3 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)) = ran ((,) ∘ 𝐺))
1259, 19, 1243eqtrd 2782 . 2 (𝜑 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺))
126 volf 24598 . . . . . 6 vol:dom vol⟶(0[,]+∞)
127126a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
1283adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
129 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
130128, 129, 45syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
13149fveq2d 6760 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
132101eqcomi 2747 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))
133132a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
134130, 131, 1333eqtrd 2782 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
135 ioombl 24634 . . . . . . . . . 10 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
136135a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol)
137134, 136eqeltrd 2839 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
138137ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
1396, 138jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
140 ffnfv 6974 . . . . . 6 (((,) ∘ 𝐹):ℕ⟶dom vol ↔ (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
141139, 140sylibr 233 . . . . 5 (𝜑 → ((,) ∘ 𝐹):ℕ⟶dom vol)
142 fco 6608 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐹):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
143127, 141, 142syl2anc 583 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
144143ffnd 6585 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) Fn ℕ)
14568adantlr 711 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
146137adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
147145, 146eqeltrd 2839 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
148 simpll 763 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝜑)
149 eldif 3893 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ 𝐴) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴))
150149bicomi 223 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) ↔ 𝑛 ∈ (ℕ ∖ 𝐴))
151150biimpi 215 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
152151adantll 710 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
153117, 135eqeltrrdi 2848 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ∅ ∈ dom vol)
15492, 153eqeltrd 2839 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
155148, 152, 154syl2anc 583 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
156147, 155pm2.61dan 809 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
157156ralrimiva 3107 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
15831, 157jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
159 ffnfv 6974 . . . . . 6 (((,) ∘ 𝐺):ℕ⟶dom vol ↔ (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
160158, 159sylibr 233 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶dom vol)
161 fco 6608 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐺):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
162127, 160, 161syl2anc 583 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
163162ffnd 6585 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐺)) Fn ℕ)
164145eqcomd 2744 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
165119, 92eqtr4d 2781 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
166148, 152, 165syl2anc 583 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
167164, 166pm2.61dan 809 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
168167fveq2d 6760 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(((,) ∘ 𝐹)‘𝑛)) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
169 fnfun 6517 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → Fun ((,) ∘ 𝐹))
1706, 169syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐹))
171170adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐹))
1725fdmd 6595 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐹) = ℕ)
173172eqcomd 2744 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐹))
174173adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐹))
175129, 174eleqtrd 2841 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐹))
176 fvco 6848 . . . . 5 ((Fun ((,) ∘ 𝐹) ∧ 𝑛 ∈ dom ((,) ∘ 𝐹)) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
177171, 175, 176syl2anc 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
178 fnfun 6517 . . . . . . 7 (((,) ∘ 𝐺) Fn ℕ → Fun ((,) ∘ 𝐺))
17931, 178syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐺))
180179adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐺))
18130fdmd 6595 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐺) = ℕ)
182181eqcomd 2744 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐺))
183182adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐺))
184129, 183eleqtrd 2841 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐺))
185 fvco 6848 . . . . 5 ((Fun ((,) ∘ 𝐺) ∧ 𝑛 ∈ dom ((,) ∘ 𝐺)) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
186180, 184, 185syl2anc 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
187168, 177, 1863eqtr4d 2788 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = ((vol ∘ ((,) ∘ 𝐺))‘𝑛))
188144, 163, 187eqfnfvd 6894 . 2 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺)))
189125, 188jca 511 1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  wss 3883  c0 4253  ifcif 4456  𝒫 cpw 4530  cop 4564   cuni 4836   ciun 4921   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  ran crn 5581  ccom 5584  Fun wfun 6412   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cn 11903  (,)cioo 13008  [,]cicc 13011  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534
This theorem is referenced by:  ovolval4lem2  44078
  Copyright terms: Public domain W3C validator