Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval4lem1 Structured version   Visualization version   GIF version

Theorem ovolval4lem1 46678
Description: |- ( ( ph /\ n e. A ) -> ( ( (,) o. G ) 𝑛) = (((,) ∘ 𝐹) n ) ) (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval4lem1.f (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
ovolval4lem1.g 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
ovolval4lem1.a 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
Assertion
Ref Expression
ovolval4lem1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝐹   𝑛,𝐺   𝜑,𝑛

Proof of Theorem ovolval4lem1
StepHypRef Expression
1 ioof 13464 . . . . . . . 8 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
21a1i 11 . . . . . . 7 (𝜑 → (,):(ℝ* × ℝ*)⟶𝒫 ℝ)
3 ovolval4lem1.f . . . . . . 7 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
4 fco 6730 . . . . . . 7 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
52, 3, 4syl2anc 584 . . . . . 6 (𝜑 → ((,) ∘ 𝐹):ℕ⟶𝒫 ℝ)
65ffnd 6707 . . . . 5 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
7 fniunfv 7239 . . . . 5 (((,) ∘ 𝐹) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
86, 7syl 17 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ran ((,) ∘ 𝐹))
98eqcomd 2741 . . 3 (𝜑 ran ((,) ∘ 𝐹) = 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛))
10 ovolval4lem1.a . . . . . . . . 9 𝐴 = {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))}
11 ssrab2 4055 . . . . . . . . 9 {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ⊆ ℕ
1210, 11eqsstri 4005 . . . . . . . 8 𝐴 ⊆ ℕ
13 undif 4457 . . . . . . . 8 (𝐴 ⊆ ℕ ↔ (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ)
1412, 13mpbi 230 . . . . . . 7 (𝐴 ∪ (ℕ ∖ 𝐴)) = ℕ
1514eqcomi 2744 . . . . . 6 ℕ = (𝐴 ∪ (ℕ ∖ 𝐴))
1615iuneq1i 45109 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛)
17 iunxun 5070 . . . . 5 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1816, 17eqtri 2758 . . . 4 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
1918a1i 11 . . 3 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
203ffvelcdmda 7074 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ (ℝ* × ℝ*))
21 xp1st 8020 . . . . . . . . . . 11 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
2220, 21syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
23 xp2nd 8021 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2420, 23syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
2524, 22ifcld 4547 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) ∈ ℝ*)
2622, 25opelxpd 5693 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ (ℝ* × ℝ*))
27 ovolval4lem1.g . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
2826, 27fmptd 7104 . . . . . . . 8 (𝜑𝐺:ℕ⟶(ℝ* × ℝ*))
29 fco 6730 . . . . . . . 8 (((,):(ℝ* × ℝ*)⟶𝒫 ℝ ∧ 𝐺:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
302, 28, 29syl2anc 584 . . . . . . 7 (𝜑 → ((,) ∘ 𝐺):ℕ⟶𝒫 ℝ)
3130ffnd 6707 . . . . . 6 (𝜑 → ((,) ∘ 𝐺) Fn ℕ)
32 fniunfv 7239 . . . . . 6 (((,) ∘ 𝐺) Fn ℕ → 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3331, 32syl 17 . . . . 5 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ran ((,) ∘ 𝐺))
3433eqcomd 2741 . . . 4 (𝜑 ran ((,) ∘ 𝐺) = 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛))
3515iuneq1i 45109 . . . . . 6 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛)
36 iunxun 5070 . . . . . 6 𝑛 ∈ (𝐴 ∪ (ℕ ∖ 𝐴))(((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3735, 36eqtri 2758 . . . . 5 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛))
3837a1i 11 . . . 4 (𝜑 𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) = ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)))
3928adantr 480 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝐺:ℕ⟶(ℝ* × ℝ*))
4012sseli 3954 . . . . . . . . 9 (𝑛𝐴𝑛 ∈ ℕ)
4140adantl 481 . . . . . . . 8 ((𝜑𝑛𝐴) → 𝑛 ∈ ℕ)
42 fvco3 6978 . . . . . . . 8 ((𝐺:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
4339, 41, 42syl2anc 584 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
443adantr 480 . . . . . . . . 9 ((𝜑𝑛𝐴) → 𝐹:ℕ⟶(ℝ* × ℝ*))
45 fvco3 6978 . . . . . . . . 9 ((𝐹:ℕ⟶(ℝ* × ℝ*) ∧ 𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
4644, 41, 45syl2anc 584 . . . . . . . 8 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
47 simpl 482 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → 𝜑)
48 1st2nd2 8027 . . . . . . . . . . . 12 ((𝐹𝑛) ∈ (ℝ* × ℝ*) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
4920, 48syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5047, 41, 49syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
5127a1i 11 . . . . . . . . . . . . 13 (𝜑𝐺 = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩))
5226elexd 3483 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ ∈ V)
5351, 52fvmpt2d 6999 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5447, 41, 53syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
5510eleq2i 2826 . . . . . . . . . . . . . . . . 17 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
5655biimpi 216 . . . . . . . . . . . . . . . 16 (𝑛𝐴𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
57 rabid 3437 . . . . . . . . . . . . . . . 16 (𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))} ↔ (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5856, 57sylib 218 . . . . . . . . . . . . . . 15 (𝑛𝐴 → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
5958simprd 495 . . . . . . . . . . . . . 14 (𝑛𝐴 → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6059adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑛𝐴) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
6160iftrued 4508 . . . . . . . . . . . 12 ((𝜑𝑛𝐴) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (2nd ‘(𝐹𝑛)))
6261opeq2d 4856 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
63 eqidd 2736 . . . . . . . . . . 11 ((𝜑𝑛𝐴) → ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩ = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6454, 62, 633eqtrd 2774 . . . . . . . . . 10 ((𝜑𝑛𝐴) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
6550, 64eqtr4d 2773 . . . . . . . . 9 ((𝜑𝑛𝐴) → (𝐹𝑛) = (𝐺𝑛))
6665fveq2d 6880 . . . . . . . 8 ((𝜑𝑛𝐴) → ((,)‘(𝐹𝑛)) = ((,)‘(𝐺𝑛)))
6746, 66eqtrd 2770 . . . . . . 7 ((𝜑𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐺𝑛)))
6843, 67eqtr4d 2773 . . . . . 6 ((𝜑𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
6968iuneq2dv 4992 . . . . 5 (𝜑 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) = 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛))
7028adantr 480 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐺:ℕ⟶(ℝ* × ℝ*))
71 eldifi 4106 . . . . . . . . . . 11 (𝑛 ∈ (ℕ ∖ 𝐴) → 𝑛 ∈ ℕ)
7271adantl 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝑛 ∈ ℕ)
7370, 72, 42syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ((,)‘(𝐺𝑛)))
74 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝜑)
7574, 72, 53syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩)
7671anim1i 615 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → (𝑛 ∈ ℕ ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))))
7776, 57sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛 ∈ {𝑛 ∈ ℕ ∣ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))})
7877, 55sylibr 234 . . . . . . . . . . . . . . 15 ((𝑛 ∈ (ℕ ∖ 𝐴) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
7978adantll 714 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → 𝑛𝐴)
80 eldifn 4107 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℕ ∖ 𝐴) → ¬ 𝑛𝐴)
8180ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
8279, 81pm2.65da 816 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ¬ (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
8382iffalsed 4511 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))) = (1st ‘(𝐹𝑛)))
8483opeq2d 4856 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ⟨(1st ‘(𝐹𝑛)), if((1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛)), (1st ‘(𝐹𝑛)))⟩ = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8575, 84eqtrd 2770 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐺𝑛) = ⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
8685fveq2d 6880 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐺𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩))
87 iooid 13390 . . . . . . . . . . . 12 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ∅
8887eqcomi 2744 . . . . . . . . . . 11 ∅ = ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛)))
89 df-ov 7408 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(1st ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩)
9088, 89eqtr2i 2759 . . . . . . . . . 10 ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅
9190a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (1st ‘(𝐹𝑛))⟩) = ∅)
9273, 86, 913eqtrd 2774 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) = ∅)
9392iuneq2dv 4992 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
94 iun0 5038 . . . . . . . 8 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅
9594a1i 11 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)∅ = ∅)
9693, 95eqtrd 2770 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = ∅)
9774, 3syl 17 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
9897, 72, 45syl2anc 584 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
9974, 72, 49syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
10099fveq2d 6880 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
101 df-ov 7408 . . . . . . . . . . 11 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
102101a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
103 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛 ∈ (ℕ ∖ 𝐴))
10472, 22syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
105104adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ∈ ℝ*)
10672, 24syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
107106adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
108 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
109105, 107xrltnled 45390 . . . . . . . . . . . . . . 15 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ((1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)) ↔ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
110108, 109mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) < (2nd ‘(𝐹𝑛)))
111105, 107, 110xrltled 13166 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → (1st ‘(𝐹𝑛)) ≤ (2nd ‘(𝐹𝑛)))
112103, 111, 78syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → 𝑛𝐴)
11380ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) ∧ ¬ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))) → ¬ 𝑛𝐴)
114112, 113condan 817 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛)))
115 ioo0 13387 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑛)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑛)) ∈ ℝ*) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
116104, 106, 115syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅ ↔ (2nd ‘(𝐹𝑛)) ≤ (1st ‘(𝐹𝑛))))
117114, 116mpbird 257 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) = ∅)
118102, 117eqtr3d 2772 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ∅)
11998, 100, 1183eqtrd 2774 . . . . . . . 8 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = ∅)
120119iuneq2dv 4992 . . . . . . 7 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)∅)
121120, 95eqtrd 2770 . . . . . 6 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛) = ∅)
12296, 121eqtr4d 2773 . . . . 5 (𝜑 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛) = 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛))
12369, 122uneq12d 4144 . . . 4 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐺)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐺)‘𝑛)) = ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)))
12434, 38, 1233eqtrrd 2775 . . 3 (𝜑 → ( 𝑛𝐴 (((,) ∘ 𝐹)‘𝑛) ∪ 𝑛 ∈ (ℕ ∖ 𝐴)(((,) ∘ 𝐹)‘𝑛)) = ran ((,) ∘ 𝐺))
1259, 19, 1243eqtrd 2774 . 2 (𝜑 ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺))
126 volf 25482 . . . . . 6 vol:dom vol⟶(0[,]+∞)
127126a1i 11 . . . . 5 (𝜑 → vol:dom vol⟶(0[,]+∞))
1283adantr 480 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶(ℝ* × ℝ*))
129 simpr 484 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
130128, 129, 45syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((,)‘(𝐹𝑛)))
13149fveq2d 6880 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘(𝐹𝑛)) = ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
132101eqcomi 2744 . . . . . . . . . . 11 ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛)))
133132a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
134130, 131, 1333eqtrd 2774 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))))
135 ioombl 25518 . . . . . . . . . 10 ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol
136135a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((1st ‘(𝐹𝑛))(,)(2nd ‘(𝐹𝑛))) ∈ dom vol)
137134, 136eqeltrd 2834 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
138137ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
1396, 138jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
140 ffnfv 7109 . . . . . 6 (((,) ∘ 𝐹):ℕ⟶dom vol ↔ (((,) ∘ 𝐹) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐹)‘𝑛) ∈ dom vol))
141139, 140sylibr 234 . . . . 5 (𝜑 → ((,) ∘ 𝐹):ℕ⟶dom vol)
142 fco 6730 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐹):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
143127, 141, 142syl2anc 584 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐹)):ℕ⟶(0[,]+∞))
144143ffnd 6707 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) Fn ℕ)
14568adantlr 715 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) = (((,) ∘ 𝐹)‘𝑛))
146137adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) ∈ dom vol)
147145, 146eqeltrd 2834 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
148 simpll 766 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝜑)
149 eldif 3936 . . . . . . . . . . . . 13 (𝑛 ∈ (ℕ ∖ 𝐴) ↔ (𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴))
150149bicomi 224 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) ↔ 𝑛 ∈ (ℕ ∖ 𝐴))
151150biimpi 216 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
152151adantll 714 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → 𝑛 ∈ (ℕ ∖ 𝐴))
153117, 135eqeltrrdi 2843 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → ∅ ∈ dom vol)
15492, 153eqeltrd 2834 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
155148, 152, 154syl2anc 584 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
156147, 155pm2.61dan 812 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
157156ralrimiva 3132 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol)
15831, 157jca 511 . . . . . 6 (𝜑 → (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
159 ffnfv 7109 . . . . . 6 (((,) ∘ 𝐺):ℕ⟶dom vol ↔ (((,) ∘ 𝐺) Fn ℕ ∧ ∀𝑛 ∈ ℕ (((,) ∘ 𝐺)‘𝑛) ∈ dom vol))
160158, 159sylibr 234 . . . . 5 (𝜑 → ((,) ∘ 𝐺):ℕ⟶dom vol)
161 fco 6730 . . . . 5 ((vol:dom vol⟶(0[,]+∞) ∧ ((,) ∘ 𝐺):ℕ⟶dom vol) → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
162127, 160, 161syl2anc 584 . . . 4 (𝜑 → (vol ∘ ((,) ∘ 𝐺)):ℕ⟶(0[,]+∞))
163162ffnd 6707 . . 3 (𝜑 → (vol ∘ ((,) ∘ 𝐺)) Fn ℕ)
164145eqcomd 2741 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
165119, 92eqtr4d 2773 . . . . . . 7 ((𝜑𝑛 ∈ (ℕ ∖ 𝐴)) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
166148, 152, 165syl2anc 584 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ ¬ 𝑛𝐴) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
167164, 166pm2.61dan 812 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑛) = (((,) ∘ 𝐺)‘𝑛))
168167fveq2d 6880 . . . 4 ((𝜑𝑛 ∈ ℕ) → (vol‘(((,) ∘ 𝐹)‘𝑛)) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
169 fnfun 6638 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → Fun ((,) ∘ 𝐹))
1706, 169syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐹))
171170adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐹))
1725fdmd 6716 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐹) = ℕ)
173172eqcomd 2741 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐹))
174173adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐹))
175129, 174eleqtrd 2836 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐹))
176 fvco 6977 . . . . 5 ((Fun ((,) ∘ 𝐹) ∧ 𝑛 ∈ dom ((,) ∘ 𝐹)) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
177171, 175, 176syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = (vol‘(((,) ∘ 𝐹)‘𝑛)))
178 fnfun 6638 . . . . . . 7 (((,) ∘ 𝐺) Fn ℕ → Fun ((,) ∘ 𝐺))
17931, 178syl 17 . . . . . 6 (𝜑 → Fun ((,) ∘ 𝐺))
180179adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → Fun ((,) ∘ 𝐺))
18130fdmd 6716 . . . . . . . 8 (𝜑 → dom ((,) ∘ 𝐺) = ℕ)
182181eqcomd 2741 . . . . . . 7 (𝜑 → ℕ = dom ((,) ∘ 𝐺))
183182adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℕ = dom ((,) ∘ 𝐺))
184129, 183eleqtrd 2836 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ dom ((,) ∘ 𝐺))
185 fvco 6977 . . . . 5 ((Fun ((,) ∘ 𝐺) ∧ 𝑛 ∈ dom ((,) ∘ 𝐺)) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
186180, 184, 185syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐺))‘𝑛) = (vol‘(((,) ∘ 𝐺)‘𝑛)))
187168, 177, 1863eqtr4d 2780 . . 3 ((𝜑𝑛 ∈ ℕ) → ((vol ∘ ((,) ∘ 𝐹))‘𝑛) = ((vol ∘ ((,) ∘ 𝐺))‘𝑛))
188144, 163, 187eqfnfvd 7024 . 2 (𝜑 → (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺)))
189125, 188jca 511 1 (𝜑 → ( ran ((,) ∘ 𝐹) = ran ((,) ∘ 𝐺) ∧ (vol ∘ ((,) ∘ 𝐹)) = (vol ∘ ((,) ∘ 𝐺))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  wss 3926  c0 4308  ifcif 4500  𝒫 cpw 4575  cop 4607   cuni 4883   ciun 4967   class class class wbr 5119  cmpt 5201   × cxp 5652  dom cdm 5654  ran crn 5655  ccom 5658  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  cr 11128  0cc0 11129  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  cn 12240  (,)cioo 13362  [,]cicc 13365  volcvol 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-xmet 21308  df-met 21309  df-ovol 25417  df-vol 25418
This theorem is referenced by:  ovolval4lem2  46679
  Copyright terms: Public domain W3C validator