Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nssrex Structured version   Visualization version   GIF version

Theorem nssrex 44990
Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
nssrex 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nssrex
StepHypRef Expression
1 nss 4073 . 2 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 df-rex 3077 . 2 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2bitr4i 278 1 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wex 1777  wcel 2108  wrex 3076  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-rex 3077  df-ss 3993
This theorem is referenced by:  mapssbi  45122
  Copyright terms: Public domain W3C validator