Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nssrex Structured version   Visualization version   GIF version

Theorem nssrex 42636
Description: Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
nssrex 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nssrex
StepHypRef Expression
1 nss 3983 . 2 𝐴𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 df-rex 3070 . 2 (∃𝑥𝐴 ¬ 𝑥𝐵 ↔ ∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵))
31, 2bitr4i 277 1 𝐴𝐵 ↔ ∃𝑥𝐴 ¬ 𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wex 1782  wcel 2106  wrex 3065  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rex 3070  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  mapssbi  42753
  Copyright terms: Public domain W3C validator