Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnmpt Structured version   Visualization version   GIF version

Theorem nelrnmpt 44972
Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelrnmpt.x 𝑥𝜑
nelrnmpt.f 𝐹 = (𝑥𝐴𝐵)
nelrnmpt.c (𝜑𝐶𝑉)
nelrnmpt.n ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
nelrnmpt (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem nelrnmpt
StepHypRef Expression
1 nelrnmpt.x . . . 4 𝑥𝜑
2 nelrnmpt.n . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
32neneqd 2941 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝐶 = 𝐵)
43ex 412 . . . 4 (𝜑 → (𝑥𝐴 → ¬ 𝐶 = 𝐵))
51, 4ralrimi 3253 . . 3 (𝜑 → ∀𝑥𝐴 ¬ 𝐶 = 𝐵)
6 ralnex 3068 . . 3 (∀𝑥𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥𝐴 𝐶 = 𝐵)
75, 6sylib 218 . 2 (𝜑 → ¬ ∃𝑥𝐴 𝐶 = 𝐵)
8 nelrnmpt.c . . 3 (𝜑𝐶𝑉)
9 nelrnmpt.f . . . 4 𝐹 = (𝑥𝐴𝐵)
109elrnmpt 5966 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
118, 10syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
127, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1535  wnf 1778  wcel 2104  wne 2936  wral 3057  wrex 3066  cmpt 5232  ran crn 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-mpt 5233  df-cnv 5691  df-dm 5693  df-rn 5694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator