| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnmpt | Structured version Visualization version GIF version | ||
| Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| nelrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| nelrnmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| nelrnmpt.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| nelrnmpt.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| nelrnmpt | ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelrnmpt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nelrnmpt.n | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) | |
| 3 | 2 | neneqd 2931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝐶 = 𝐵) |
| 4 | 3 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ 𝐶 = 𝐵)) |
| 5 | 1, 4 | ralrimi 3236 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵) |
| 6 | ralnex 3056 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 8 | nelrnmpt.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 9 | nelrnmpt.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | elrnmpt 5924 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 12 | 7, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ↦ cmpt 5190 ran crn 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-mpt 5191 df-cnv 5648 df-dm 5650 df-rn 5651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |