Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnmpt Structured version   Visualization version   GIF version

Theorem nelrnmpt 42523
Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelrnmpt.x 𝑥𝜑
nelrnmpt.f 𝐹 = (𝑥𝐴𝐵)
nelrnmpt.c (𝜑𝐶𝑉)
nelrnmpt.n ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
nelrnmpt (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem nelrnmpt
StepHypRef Expression
1 nelrnmpt.x . . . 4 𝑥𝜑
2 nelrnmpt.n . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
32neneqd 2947 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝐶 = 𝐵)
43ex 412 . . . 4 (𝜑 → (𝑥𝐴 → ¬ 𝐶 = 𝐵))
51, 4ralrimi 3139 . . 3 (𝜑 → ∀𝑥𝐴 ¬ 𝐶 = 𝐵)
6 ralnex 3163 . . 3 (∀𝑥𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥𝐴 𝐶 = 𝐵)
75, 6sylib 217 . 2 (𝜑 → ¬ ∃𝑥𝐴 𝐶 = 𝐵)
8 nelrnmpt.c . . 3 (𝜑𝐶𝑉)
9 nelrnmpt.f . . . 4 𝐹 = (𝑥𝐴𝐵)
109elrnmpt 5854 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
118, 10syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
127, 11mtbird 324 1 (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wne 2942  wral 3063  wrex 3064  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-mpt 5154  df-cnv 5588  df-dm 5590  df-rn 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator