| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnmpt | Structured version Visualization version GIF version | ||
| Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| nelrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
| nelrnmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| nelrnmpt.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| nelrnmpt.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) |
| Ref | Expression |
|---|---|
| nelrnmpt | ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelrnmpt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nelrnmpt.n | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) | |
| 3 | 2 | neneqd 2936 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝐶 = 𝐵) |
| 4 | 3 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ 𝐶 = 𝐵)) |
| 5 | 1, 4 | ralrimi 3243 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵) |
| 6 | ralnex 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 8 | nelrnmpt.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 9 | nelrnmpt.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 10 | 9 | elrnmpt 5949 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 12 | 7, 11 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∃wrex 3059 ↦ cmpt 5205 ran crn 5666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-mpt 5206 df-cnv 5673 df-dm 5675 df-rn 5676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |