Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nelrnmpt Structured version   Visualization version   GIF version

Theorem nelrnmpt 45180
Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
nelrnmpt.x 𝑥𝜑
nelrnmpt.f 𝐹 = (𝑥𝐴𝐵)
nelrnmpt.c (𝜑𝐶𝑉)
nelrnmpt.n ((𝜑𝑥𝐴) → 𝐶𝐵)
Assertion
Ref Expression
nelrnmpt (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem nelrnmpt
StepHypRef Expression
1 nelrnmpt.x . . . 4 𝑥𝜑
2 nelrnmpt.n . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
32neneqd 2933 . . . . 5 ((𝜑𝑥𝐴) → ¬ 𝐶 = 𝐵)
43ex 412 . . . 4 (𝜑 → (𝑥𝐴 → ¬ 𝐶 = 𝐵))
51, 4ralrimi 3230 . . 3 (𝜑 → ∀𝑥𝐴 ¬ 𝐶 = 𝐵)
6 ralnex 3058 . . 3 (∀𝑥𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥𝐴 𝐶 = 𝐵)
75, 6sylib 218 . 2 (𝜑 → ¬ ∃𝑥𝐴 𝐶 = 𝐵)
8 nelrnmpt.c . . 3 (𝜑𝐶𝑉)
9 nelrnmpt.f . . . 4 𝐹 = (𝑥𝐴𝐵)
109elrnmpt 5897 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
118, 10syl 17 . 2 (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
127, 11mtbird 325 1 (𝜑 → ¬ 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wne 2928  wral 3047  wrex 3056  cmpt 5170  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator