![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nelrnmpt | Structured version Visualization version GIF version |
Description: Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
nelrnmpt.x | ⊢ Ⅎ𝑥𝜑 |
nelrnmpt.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
nelrnmpt.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
nelrnmpt.n | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) |
Ref | Expression |
---|---|
nelrnmpt | ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelrnmpt.x | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nelrnmpt.n | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) | |
3 | 2 | neneqd 2935 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝐶 = 𝐵) |
4 | 3 | ex 411 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ 𝐶 = 𝐵)) |
5 | 1, 4 | ralrimi 3245 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵) |
6 | ralnex 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝐶 = 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝜑 → ¬ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
8 | nelrnmpt.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
9 | nelrnmpt.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
10 | 9 | elrnmpt 5950 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
12 | 7, 11 | mtbird 324 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 ↦ cmpt 5224 ran crn 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-br 5142 df-opab 5204 df-mpt 5225 df-cnv 5678 df-dm 5680 df-rn 5681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |