MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoi3 Structured version   Visualization version   GIF version

Theorem jaoi3 1061
Description: Inference separating a disjunct of an antecedent. (Contributed by Alexander van der Vekens, 25-May-2018.)
Hypotheses
Ref Expression
jaoi3.1 (𝜑𝜓)
jaoi3.2 ((¬ 𝜑𝜒) → 𝜓)
Assertion
Ref Expression
jaoi3 ((𝜑𝜒) → 𝜓)

Proof of Theorem jaoi3
StepHypRef Expression
1 jaoi3.1 . . 3 (𝜑𝜓)
2 jaoi3.2 . . 3 ((¬ 𝜑𝜒) → 𝜓)
31, 2jaoi 856 . 2 ((𝜑 ∨ (¬ 𝜑𝜒)) → 𝜓)
43jaoi2 1060 1 ((𝜑𝜒) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847
This theorem is referenced by:  2mpo0  7699  bropopvvv  8131  bropfvvvv  8133  ssnn0fi  14036  swrdnd  14702  swrdnnn0nd  14704  swrdnd0  14705  pfxnd0  14736  line2ylem  48485  line2xlem  48487  itsclc0xyqsol  48502
  Copyright terms: Public domain W3C validator