MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jaoi3 Structured version   Visualization version   GIF version

Theorem jaoi3 1087
Description: Inference separating a disjunct of an antecedent. (Contributed by Alexander van der Vekens, 25-May-2018.)
Hypotheses
Ref Expression
jaoi3.1 (𝜑𝜓)
jaoi3.2 ((¬ 𝜑𝜒) → 𝜓)
Assertion
Ref Expression
jaoi3 ((𝜑𝜒) → 𝜓)

Proof of Theorem jaoi3
StepHypRef Expression
1 jaoi3.1 . . 3 (𝜑𝜓)
2 jaoi3.2 . . 3 ((¬ 𝜑𝜒) → 𝜓)
31, 2jaoi 888 . 2 ((𝜑 ∨ (¬ 𝜑𝜒)) → 𝜓)
43jaoi2 1086 1 ((𝜑𝜒) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  wo 878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879
This theorem is referenced by:  2mpt20  7147  bropopvvv  7524  bropfvvvv  7526  ssnn0fi  13086  swrdnd  13726  swrdnnn0nd  13728  swrdnd0  13729  pfxnd0  13774  line2ylem  43313  line2xlem  43315
  Copyright terms: Public domain W3C validator