MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd Structured version   Visualization version   GIF version

Theorem swrdnd 14689
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdnd ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 3orcomb 1093 . . . 4 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹))
2 df-3or 1087 . . . 4 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
31, 2bitri 275 . . 3 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
4 swrdlend 14688 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
54com12 32 . . . . 5 (𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
6 swrdval 14678 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
76adantl 481 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
8 zre 12615 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
9 0red 11262 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 0 ∈ ℝ)
108, 9ltnled 11406 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
11103ad2ant2 1133 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
12 lencl 14568 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1312nn0red 12586 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
14 zre 12615 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1513, 14anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
16153adant2 1130 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
17 ltnle 11338 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1911, 18orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2019biimpcd 249 . . . . . . . . . . . . . 14 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2120adantr 480 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2221imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
23 ianor 983 . . . . . . . . . . . 12 (¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
2422, 23sylibr 234 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)))
25 3simpc 1149 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2612nn0zd 12637 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
27 0z 12622 . . . . . . . . . . . . . 14 0 ∈ ℤ
2826, 27jctil 519 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283ad2ant1 1132 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 ltnle 11338 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
318, 14, 30syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
32313adant1 1129 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
3332biimprcd 250 . . . . . . . . . . . . . 14 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3433adantl 481 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3534imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿)
36 ssfzo12bi 13797 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3725, 29, 35, 36syl2an23an 1422 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3824, 37mtbird 325 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))
39 wrddm 14556 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
4039sseq2d 4028 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4140notbid 318 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
42413ad2ant1 1132 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4342adantl 481 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4438, 43mpbird 257 . . . . . . . . 9 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊)
4544iffalsed 4542 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅)
467, 45eqtrd 2775 . . . . . . 7 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
4746exp31 419 . . . . . 6 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → (¬ 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)))
4847impcom 407 . . . . 5 ((¬ 𝐿𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
495, 48jaoi3 1060 . . . 4 ((𝐿𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5049orcoms 872 . . 3 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
513, 50sylbi 217 . 2 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5251com12 32 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wss 3963  c0 4339  ifcif 4531  cop 4637   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   + caddc 11156   < clt 11293  cle 11294  cmin 11490  cz 12611  ..^cfzo 13691  chash 14366  Word cword 14549   substr csubstr 14675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-substr 14676
This theorem is referenced by:  swrdnnn0nd  14691  swrdnd0  14692  pfxnd  14722
  Copyright terms: Public domain W3C validator