MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd Structured version   Visualization version   GIF version

Theorem swrdnd 14579
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdnd ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 3orcomb 1093 . . . 4 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹))
2 df-3or 1087 . . . 4 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
31, 2bitri 275 . . 3 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
4 swrdlend 14578 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
54com12 32 . . . . 5 (𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
6 swrdval 14568 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
76adantl 481 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
8 zre 12493 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
9 0red 11137 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 0 ∈ ℝ)
108, 9ltnled 11281 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
11103ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
12 lencl 14458 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1312nn0red 12464 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
14 zre 12493 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1513, 14anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
16153adant2 1131 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
17 ltnle 11213 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1911, 18orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2019biimpcd 249 . . . . . . . . . . . . . 14 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2120adantr 480 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2221imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
23 ianor 983 . . . . . . . . . . . 12 (¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
2422, 23sylibr 234 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)))
25 3simpc 1150 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2612nn0zd 12515 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
27 0z 12500 . . . . . . . . . . . . . 14 0 ∈ ℤ
2826, 27jctil 519 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283ad2ant1 1133 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 ltnle 11213 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
318, 14, 30syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
32313adant1 1130 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
3332biimprcd 250 . . . . . . . . . . . . . 14 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3433adantl 481 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3534imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿)
36 ssfzo12bi 13682 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3725, 29, 35, 36syl2an23an 1425 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3824, 37mtbird 325 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))
39 wrddm 14446 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
4039sseq2d 3970 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4140notbid 318 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
42413ad2ant1 1133 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4342adantl 481 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4438, 43mpbird 257 . . . . . . . . 9 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊)
4544iffalsed 4489 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅)
467, 45eqtrd 2764 . . . . . . 7 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
4746exp31 419 . . . . . 6 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → (¬ 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)))
4847impcom 407 . . . . 5 ((¬ 𝐿𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
495, 48jaoi3 1060 . . . 4 ((𝐿𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5049orcoms 872 . . 3 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
513, 50sylbi 217 . 2 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5251com12 32 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wss 3905  c0 4286  ifcif 4478  cop 4585   class class class wbr 5095  cmpt 5176  dom cdm 5623  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cz 12489  ..^cfzo 13575  chash 14255  Word cword 14438   substr csubstr 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-substr 14566
This theorem is referenced by:  swrdnnn0nd  14581  swrdnd0  14582  pfxnd  14612
  Copyright terms: Public domain W3C validator