Step | Hyp | Ref
| Expression |
1 | | 3orcomb 1093 |
. . . 4
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿 ∨ 𝐿 ≤ 𝐹)) |
2 | | df-3or 1087 |
. . . 4
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿 ∨ 𝐿 ≤ 𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿 ≤ 𝐹)) |
3 | 1, 2 | bitri 274 |
. . 3
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿 ≤ 𝐹)) |
4 | | swrdlend 14366 |
. . . . . 6
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 ≤ 𝐹 → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
5 | 4 | com12 32 |
. . . . 5
⊢ (𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
6 | | swrdval 14356 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
7 | 6 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅)) |
8 | | zre 12323 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ ℤ → 𝐹 ∈
ℝ) |
9 | | 0red 10978 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ ℤ → 0 ∈
ℝ) |
10 | 8, 9 | ltnled 11122 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤
𝐹)) |
11 | 10 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹)) |
12 | | lencl 14236 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) |
13 | 12 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
14 | | zre 12323 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
15 | 13, 14 | anim12i 613 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) ∈
ℝ ∧ 𝐿 ∈
ℝ)) |
16 | 15 | 3adant2 1130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) ∈
ℝ ∧ 𝐿 ∈
ℝ)) |
17 | | ltnle 11054 |
. . . . . . . . . . . . . . . . 17
⊢
(((♯‘𝑊)
∈ ℝ ∧ 𝐿
∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) →
((♯‘𝑊) <
𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊))) |
19 | 11, 18 | orbi12d 916 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
20 | 19 | biimpcd 248 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))) |
22 | 21 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))) |
23 | | ianor 979 |
. . . . . . . . . . . 12
⊢ (¬ (0
≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))) |
24 | 22, 23 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊))) |
25 | | 3simpc 1149 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
26 | 12 | nn0zd 12424 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ) |
27 | | 0z 12330 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
28 | 26, 27 | jctil 520 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧
(♯‘𝑊) ∈
ℤ)) |
29 | 28 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ
∧ (♯‘𝑊)
∈ ℤ)) |
30 | | ltnle 11054 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
31 | 8, 14, 30 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
32 | 31 | 3adant1 1129 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿 ≤ 𝐹)) |
33 | 32 | biimprcd 249 |
. . . . . . . . . . . . . 14
⊢ (¬
𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
34 | 33 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿)) |
35 | 34 | imp 407 |
. . . . . . . . . . . 12
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿) |
36 | | ssfzo12bi 13482 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈
ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
37 | 25, 29, 35, 36 | syl2an23an 1422 |
. . . . . . . . . . 11
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹 ∧ 𝐿 ≤ (♯‘𝑊)))) |
38 | 24, 37 | mtbird 325 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))) |
39 | | wrddm 14224 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊))) |
40 | 39 | sseq2d 3953 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
41 | 40 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
42 | 41 | 3ad2ant1 1132 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
43 | 42 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))) |
44 | 38, 43 | mpbird 256 |
. . . . . . . . 9
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊) |
45 | 44 | iffalsed 4470 |
. . . . . . . 8
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿 − 𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅) |
46 | 7, 45 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∧ ¬ 𝐿 ≤ 𝐹) ∧ (𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅) |
47 | 46 | exp31 420 |
. . . . . 6
⊢ ((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) → (¬ 𝐿 ≤ 𝐹 → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅))) |
48 | 47 | impcom 408 |
. . . . 5
⊢ ((¬
𝐿 ≤ 𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
49 | 5, 48 | jaoi3 1058 |
. . . 4
⊢ ((𝐿 ≤ 𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
50 | 49 | orcoms 869 |
. . 3
⊢ (((𝐹 < 0 ∨
(♯‘𝑊) <
𝐿) ∨ 𝐿 ≤ 𝐹) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
51 | 3, 50 | sylbi 216 |
. 2
⊢ ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |
52 | 51 | com12 32 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿 ≤ 𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr 〈𝐹, 𝐿〉) = ∅)) |