MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd Structured version   Visualization version   GIF version

Theorem swrdnd 14604
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdnd ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 3orcomb 1095 . . . 4 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹))
2 df-3or 1089 . . . 4 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
31, 2bitri 275 . . 3 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
4 swrdlend 14603 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
54com12 32 . . . . 5 (𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
6 swrdval 14593 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
76adantl 483 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
8 zre 12562 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
9 0red 11217 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 0 ∈ ℝ)
108, 9ltnled 11361 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
11103ad2ant2 1135 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
12 lencl 14483 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1312nn0red 12533 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
14 zre 12562 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1513, 14anim12i 614 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
16153adant2 1132 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
17 ltnle 11293 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1911, 18orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2019biimpcd 248 . . . . . . . . . . . . . 14 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2120adantr 482 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2221imp 408 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
23 ianor 981 . . . . . . . . . . . 12 (¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
2422, 23sylibr 233 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)))
25 3simpc 1151 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2612nn0zd 12584 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
27 0z 12569 . . . . . . . . . . . . . 14 0 ∈ ℤ
2826, 27jctil 521 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283ad2ant1 1134 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 ltnle 11293 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
318, 14, 30syl2an 597 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
32313adant1 1131 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
3332biimprcd 249 . . . . . . . . . . . . . 14 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3433adantl 483 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3534imp 408 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿)
36 ssfzo12bi 13727 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3725, 29, 35, 36syl2an23an 1424 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3824, 37mtbird 325 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))
39 wrddm 14471 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
4039sseq2d 4015 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4140notbid 318 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
42413ad2ant1 1134 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4342adantl 483 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4438, 43mpbird 257 . . . . . . . . 9 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊)
4544iffalsed 4540 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅)
467, 45eqtrd 2773 . . . . . . 7 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
4746exp31 421 . . . . . 6 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → (¬ 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)))
4847impcom 409 . . . . 5 ((¬ 𝐿𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
495, 48jaoi3 1060 . . . 4 ((𝐿𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5049orcoms 871 . . 3 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
513, 50sylbi 216 . 2 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5251com12 32 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wss 3949  c0 4323  ifcif 4529  cop 4635   class class class wbr 5149  cmpt 5232  dom cdm 5677  cfv 6544  (class class class)co 7409  cr 11109  0cc0 11110   + caddc 11113   < clt 11248  cle 11249  cmin 11444  cz 12558  ..^cfzo 13627  chash 14290  Word cword 14464   substr csubstr 14590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-substr 14591
This theorem is referenced by:  swrdnnn0nd  14606  swrdnd0  14607  pfxnd  14637
  Copyright terms: Public domain W3C validator