MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnd Structured version   Visualization version   GIF version

Theorem swrdnd 14677
Description: The value of the subword extractor is the empty set (undefined) if the range is not valid. (Contributed by Alexander van der Vekens, 16-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
Assertion
Ref Expression
swrdnd ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))

Proof of Theorem swrdnd
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 3orcomb 1093 . . . 4 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹))
2 df-3or 1087 . . . 4 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿𝐿𝐹) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
31, 2bitri 275 . . 3 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) ↔ ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹))
4 swrdlend 14676 . . . . . 6 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿𝐹 → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
54com12 32 . . . . 5 (𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
6 swrdval 14666 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
76adantl 481 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅))
8 zre 12597 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 𝐹 ∈ ℝ)
9 0red 11243 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ℤ → 0 ∈ ℝ)
108, 9ltnled 11387 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ ℤ → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
11103ad2ant2 1134 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 0 ↔ ¬ 0 ≤ 𝐹))
12 lencl 14556 . . . . . . . . . . . . . . . . . . . 20 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1312nn0red 12568 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
14 zre 12597 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1513, 14anim12i 613 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
16153adant2 1131 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ))
17 ltnle 11319 . . . . . . . . . . . . . . . . 17 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1816, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
1911, 18orbi12d 918 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2019biimpcd 249 . . . . . . . . . . . . . 14 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2120adantr 480 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
2221imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
23 ianor 983 . . . . . . . . . . . 12 (¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)) ↔ (¬ 0 ≤ 𝐹 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
2422, 23sylibr 234 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊)))
25 3simpc 1150 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
2612nn0zd 12619 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
27 0z 12604 . . . . . . . . . . . . . 14 0 ∈ ℤ
2826, 27jctil 519 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
29283ad2ant1 1133 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ))
30 ltnle 11319 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
318, 14, 30syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
32313adant1 1130 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐹 < 𝐿 ↔ ¬ 𝐿𝐹))
3332biimprcd 250 . . . . . . . . . . . . . 14 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3433adantl 481 . . . . . . . . . . . . 13 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐹 < 𝐿))
3534imp 406 . . . . . . . . . . . 12 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐹 < 𝐿)
36 ssfzo12bi 13782 . . . . . . . . . . . 12 (((𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (0 ∈ ℤ ∧ (♯‘𝑊) ∈ ℤ) ∧ 𝐹 < 𝐿) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3725, 29, 35, 36syl2an23an 1425 . . . . . . . . . . 11 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)) ↔ (0 ≤ 𝐹𝐿 ≤ (♯‘𝑊))))
3824, 37mtbird 325 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊)))
39 wrddm 14544 . . . . . . . . . . . . . 14 (𝑊 ∈ Word 𝑉 → dom 𝑊 = (0..^(♯‘𝑊)))
4039sseq2d 3996 . . . . . . . . . . . . 13 (𝑊 ∈ Word 𝑉 → ((𝐹..^𝐿) ⊆ dom 𝑊 ↔ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4140notbid 318 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
42413ad2ant1 1133 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4342adantl 481 . . . . . . . . . 10 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (¬ (𝐹..^𝐿) ⊆ dom 𝑊 ↔ ¬ (𝐹..^𝐿) ⊆ (0..^(♯‘𝑊))))
4438, 43mpbird 257 . . . . . . . . 9 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ¬ (𝐹..^𝐿) ⊆ dom 𝑊)
4544iffalsed 4516 . . . . . . . 8 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → if((𝐹..^𝐿) ⊆ dom 𝑊, (𝑖 ∈ (0..^(𝐿𝐹)) ↦ (𝑊‘(𝑖 + 𝐹))), ∅) = ∅)
467, 45eqtrd 2771 . . . . . . 7 ((((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∧ ¬ 𝐿𝐹) ∧ (𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)
4746exp31 419 . . . . . 6 ((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) → (¬ 𝐿𝐹 → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅)))
4847impcom 407 . . . . 5 ((¬ 𝐿𝐹 ∧ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
495, 48jaoi3 1060 . . . 4 ((𝐿𝐹 ∨ (𝐹 < 0 ∨ (♯‘𝑊) < 𝐿)) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5049orcoms 872 . . 3 (((𝐹 < 0 ∨ (♯‘𝑊) < 𝐿) ∨ 𝐿𝐹) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
513, 50sylbi 217 . 2 ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
5251com12 32 1 ((𝑊 ∈ Word 𝑉𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐹 < 0 ∨ 𝐿𝐹 ∨ (♯‘𝑊) < 𝐿) → (𝑊 substr ⟨𝐹, 𝐿⟩) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wss 3931  c0 4313  ifcif 4505  cop 4612   class class class wbr 5124  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   + caddc 11137   < clt 11274  cle 11275  cmin 11471  cz 12593  ..^cfzo 13676  chash 14353  Word cword 14536   substr csubstr 14663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-substr 14664
This theorem is referenced by:  swrdnnn0nd  14679  swrdnd0  14680  pfxnd  14710
  Copyright terms: Public domain W3C validator