Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2xlem Structured version   Visualization version   GIF version

Theorem line2xlem 47392
Description: Lemma for line2x 47393. This proof is based on counterexamples for the following cases: 1. 𝑀 ≠ (𝐶 / 𝐵): p = (0,C/B) (LHS of bicondional is true, RHS is false); 2. 𝐴 ≠ 0 ∧ 𝑀 = (𝐶 / 𝐵): p = (1,C/B) (LHS of bicondional is false, RHS is true). (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2x.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2x.y 𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}
Assertion
Ref Expression
line2xlem (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2xlem
StepHypRef Expression
1 ianor 980 . . . 4 (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) ↔ (¬ 𝐴 = 0 ∨ ¬ 𝑀 = (𝐶 / 𝐵)))
2 df-ne 2941 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
3 df-ne 2941 . . . . 5 (𝑀 ≠ (𝐶 / 𝐵) ↔ ¬ 𝑀 = (𝐶 / 𝐵))
42, 3orbi12i 913 . . . 4 ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) ↔ (¬ 𝐴 = 0 ∨ ¬ 𝑀 = (𝐶 / 𝐵)))
51, 4bitr4i 277 . . 3 (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) ↔ (𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)))
6 0red 11213 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 0 ∈ ℝ)
7 simp3 1138 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℝ)
9 simpl 483 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
1093ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1110adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ∈ ℝ)
12 simp2r 1200 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ≠ 0)
1312adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ≠ 0)
148, 11, 13redivcld 12038 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1514adantl 482 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐶 / 𝐵) ∈ ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
17 line2.p . . . . . . . . . . 11 𝑃 = (ℝ ↑m 𝐼)
1816, 17prelrrx2 47352 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
196, 15, 18syl2anc 584 . . . . . . . . 9 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
20 id 22 . . . . . . . . . . . . . . . 16 (𝑀 ≠ (𝐶 / 𝐵) → 𝑀 ≠ (𝐶 / 𝐵))
2120necomd 2996 . . . . . . . . . . . . . . 15 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 / 𝐵) ≠ 𝑀)
2221neneqd 2945 . . . . . . . . . . . . . 14 (𝑀 ≠ (𝐶 / 𝐵) → ¬ (𝐶 / 𝐵) = 𝑀)
2322a1d 25 . . . . . . . . . . . . 13 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 = 𝐶 → ¬ (𝐶 / 𝐵) = 𝑀))
24 eqidd 2733 . . . . . . . . . . . . . 14 (¬ (𝐶 / 𝐵) = 𝑀𝐶 = 𝐶)
2524a1i 11 . . . . . . . . . . . . 13 (𝑀 ≠ (𝐶 / 𝐵) → (¬ (𝐶 / 𝐵) = 𝑀𝐶 = 𝐶))
2623, 25impbid 211 . . . . . . . . . . . 12 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 = 𝐶 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
27 xor3 383 . . . . . . . . . . . 12 (¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐶 = 𝐶 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
2826, 27sylibr 233 . . . . . . . . . . 11 (𝑀 ≠ (𝐶 / 𝐵) → ¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
2928adantr 481 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
30 0red 11213 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 0 ∈ ℝ)
31 fv1prop 47338 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
3332oveq2d 7421 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = (𝐴 · 0))
34 recn 11196 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3534mul01d 11409 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
36353ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐴 · 0) = 0)
3736adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · 0) = 0)
3833, 37eqtrd 2772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = 0)
39 ovexd 7440 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 / 𝐵) ∈ V)
40 fv2prop 47339 . . . . . . . . . . . . . . . . . 18 ((𝐶 / 𝐵) ∈ V → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
4139, 40syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
4241oveq2d 7421 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = (𝐵 · (𝐶 / 𝐵)))
437recnd 11238 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4443adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℂ)
459recnd 11238 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
46453ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4746adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ∈ ℂ)
4844, 47, 13divcan2d 11988 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · (𝐶 / 𝐵)) = 𝐶)
4942, 48eqtrd 2772 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = 𝐶)
5038, 49oveq12d 7423 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (0 + 𝐶))
5150adantl 482 . . . . . . . . . . . . 13 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (0 + 𝐶))
5243addlidd 11411 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (0 + 𝐶) = 𝐶)
5352adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (0 + 𝐶) = 𝐶)
5453adantl 482 . . . . . . . . . . . . 13 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (0 + 𝐶) = 𝐶)
5551, 54eqtrd 2772 . . . . . . . . . . . 12 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶)
5655eqeq1d 2734 . . . . . . . . . . 11 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶𝐶 = 𝐶))
5741eqeq1d 2734 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
5857adantl 482 . . . . . . . . . . 11 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
5956, 58bibi12d 345 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
6029, 59mtbird 324 . . . . . . . . 9 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
61 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1))
6261oveq2d 7421 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)))
63 fveq1 6887 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))
6463oveq2d 7421 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)))
6562, 64oveq12d 7423 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))))
6665eqeq1d 2734 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶))
6763eqeq1d 2734 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝑝‘2) = 𝑀 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
6866, 67bibi12d 345 . . . . . . . . . . 11 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
6968notbid 317 . . . . . . . . . 10 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
7069rspcev 3612 . . . . . . . . 9 (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
7119, 60, 70syl2anc 584 . . . . . . . 8 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
7271ex 413 . . . . . . 7 (𝑀 ≠ (𝐶 / 𝐵) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
73 nne 2944 . . . . . . . 8 𝑀 ≠ (𝐶 / 𝐵) ↔ 𝑀 = (𝐶 / 𝐵))
74 1red 11211 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 1 ∈ ℝ)
757, 10, 12redivcld 12038 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
7674, 75jca 512 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ))
7776adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ))
7816, 17prelrrx2 47352 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
7977, 78syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
8079adantl 482 . . . . . . . . . 10 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
81 eqneqall 2951 . . . . . . . . . . . . . . . . 17 (𝐴 = 0 → (𝐴 ≠ 0 → ¬ (𝐶 / 𝐵) = 𝑀))
8281com12 32 . . . . . . . . . . . . . . . 16 (𝐴 ≠ 0 → (𝐴 = 0 → ¬ (𝐶 / 𝐵) = 𝑀))
8382adantl 482 . . . . . . . . . . . . . . 15 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (𝐴 = 0 → ¬ (𝐶 / 𝐵) = 𝑀))
84 pm2.24 124 . . . . . . . . . . . . . . . . 17 ((𝐶 / 𝐵) = 𝑀 → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8584eqcoms 2740 . . . . . . . . . . . . . . . 16 (𝑀 = (𝐶 / 𝐵) → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8685adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8783, 86impbid 211 . . . . . . . . . . . . . 14 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (𝐴 = 0 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
88 xor3 383 . . . . . . . . . . . . . 14 (¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐴 = 0 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
8987, 88sylibr 233 . . . . . . . . . . . . 13 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → ¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀))
9089adantr 481 . . . . . . . . . . . 12 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀))
91 simprl1 1218 . . . . . . . . . . . . . . . . 17 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐴 ∈ ℝ)
9291recnd 11238 . . . . . . . . . . . . . . . 16 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐴 ∈ ℂ)
938adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐶 ∈ ℝ)
9493recnd 11238 . . . . . . . . . . . . . . . 16 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐶 ∈ ℂ)
9592, 94addcomd 11412 . . . . . . . . . . . . . . 15 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐴 + 𝐶) = (𝐶 + 𝐴))
9695eqeq1d 2734 . . . . . . . . . . . . . 14 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 + 𝐴) = 𝐶))
97 recn 11196 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
9834, 97anim12ci 614 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
99983adant2 1131 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
10099adantr 481 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
101100adantl 482 . . . . . . . . . . . . . . 15 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
102 addid0 11629 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 + 𝐴) = 𝐶𝐴 = 0))
103101, 102syl 17 . . . . . . . . . . . . . 14 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐶 + 𝐴) = 𝐶𝐴 = 0))
10496, 103bitrd 278 . . . . . . . . . . . . 13 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 + 𝐶) = 𝐶𝐴 = 0))
105104bibi1d 343 . . . . . . . . . . . 12 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀)))
10690, 105mtbird 324 . . . . . . . . . . 11 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
107 1ex 11206 . . . . . . . . . . . . . . . . . . . 20 1 ∈ V
108107a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 1 ∈ V)
109 fv1prop 47338 . . . . . . . . . . . . . . . . . . 19 (1 ∈ V → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 1)
110108, 109syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 1)
111110oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = (𝐴 · 1))
112 ax-1rid 11176 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1131123ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐴 · 1) = 𝐴)
114113adantr 481 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · 1) = 𝐴)
115111, 114eqtrd 2772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = 𝐴)
116 fv2prop 47339 . . . . . . . . . . . . . . . . . . 19 ((𝐶 / 𝐵) ∈ V → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
11739, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
118117oveq2d 7421 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = (𝐵 · (𝐶 / 𝐵)))
1198recnd 11238 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℂ)
120119, 47, 13divcan2d 11988 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · (𝐶 / 𝐵)) = 𝐶)
121118, 120eqtrd 2772 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = 𝐶)
122115, 121oveq12d 7423 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (𝐴 + 𝐶))
123122eqeq1d 2734 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ (𝐴 + 𝐶) = 𝐶))
124117eqeq1d 2734 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
125123, 124bibi12d 345 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
126125notbid 317 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
127126adantl 482 . . . . . . . . . . 11 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
128106, 127mpbird 256 . . . . . . . . . 10 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
129 fveq1 6887 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1))
130129oveq2d 7421 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)))
131 fveq1 6887 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))
132131oveq2d 7421 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)))
133130, 132oveq12d 7423 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))))
134133eqeq1d 2734 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶))
135131eqeq1d 2734 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝑝‘2) = 𝑀 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
136134, 135bibi12d 345 . . . . . . . . . . . 12 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
137136notbid 317 . . . . . . . . . . 11 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
138137rspcev 3612 . . . . . . . . . 10 (({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
13980, 128, 138syl2anc 584 . . . . . . . . 9 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
140139ex 413 . . . . . . . 8 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
14173, 140sylanb 581 . . . . . . 7 ((¬ 𝑀 ≠ (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
14272, 141jaoi3 1059 . . . . . 6 ((𝑀 ≠ (𝐶 / 𝐵) ∨ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
143142orcoms 870 . . . . 5 ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
144143com12 32 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
145 rexnal 3100 . . . 4 (∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
146144, 145imbitrdi 250 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
1475, 146biimtrid 241 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
148147con4d 115 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  {cpr 4629  cop 4633  cfv 6540  (class class class)co 7405  m cmap 8816  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111   / cdiv 11867  2c2 12263  ℝ^crrx 24891  LineMcline 47366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271
This theorem is referenced by:  line2x  47393
  Copyright terms: Public domain W3C validator