Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2xlem Structured version   Visualization version   GIF version

Theorem line2xlem 45167
Description: Lemma for line2x 45168. This proof is based on counterexamples for the following cases: 1. 𝑀 ≠ (𝐶 / 𝐵): p = (0,C/B) (LHS of bicondional is true, RHS is false); 2. 𝐴 ≠ 0 ∧ 𝑀 = (𝐶 / 𝐵): p = (1,C/B) (LHS of bicondional is false, RHS is true). (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2x.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2x.y 𝑌 = {⟨1, 1⟩, ⟨2, 𝑀⟩}
Assertion
Ref Expression
line2xlem (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2xlem
StepHypRef Expression
1 ianor 979 . . . 4 (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) ↔ (¬ 𝐴 = 0 ∨ ¬ 𝑀 = (𝐶 / 𝐵)))
2 df-ne 2988 . . . . 5 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
3 df-ne 2988 . . . . 5 (𝑀 ≠ (𝐶 / 𝐵) ↔ ¬ 𝑀 = (𝐶 / 𝐵))
42, 3orbi12i 912 . . . 4 ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) ↔ (¬ 𝐴 = 0 ∨ ¬ 𝑀 = (𝐶 / 𝐵)))
51, 4bitr4i 281 . . 3 (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) ↔ (𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)))
6 0red 10633 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 0 ∈ ℝ)
7 simp3 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
87adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℝ)
9 simpl 486 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℝ)
1093ad2ant2 1131 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
1110adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ∈ ℝ)
12 simp2r 1197 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ≠ 0)
1312adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ≠ 0)
148, 11, 13redivcld 11457 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1514adantl 485 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐶 / 𝐵) ∈ ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
17 line2.p . . . . . . . . . . 11 𝑃 = (ℝ ↑m 𝐼)
1816, 17prelrrx2 45127 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
196, 15, 18syl2anc 587 . . . . . . . . 9 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
20 id 22 . . . . . . . . . . . . . . . 16 (𝑀 ≠ (𝐶 / 𝐵) → 𝑀 ≠ (𝐶 / 𝐵))
2120necomd 3042 . . . . . . . . . . . . . . 15 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 / 𝐵) ≠ 𝑀)
2221neneqd 2992 . . . . . . . . . . . . . 14 (𝑀 ≠ (𝐶 / 𝐵) → ¬ (𝐶 / 𝐵) = 𝑀)
2322a1d 25 . . . . . . . . . . . . 13 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 = 𝐶 → ¬ (𝐶 / 𝐵) = 𝑀))
24 eqidd 2799 . . . . . . . . . . . . . 14 (¬ (𝐶 / 𝐵) = 𝑀𝐶 = 𝐶)
2524a1i 11 . . . . . . . . . . . . 13 (𝑀 ≠ (𝐶 / 𝐵) → (¬ (𝐶 / 𝐵) = 𝑀𝐶 = 𝐶))
2623, 25impbid 215 . . . . . . . . . . . 12 (𝑀 ≠ (𝐶 / 𝐵) → (𝐶 = 𝐶 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
27 xor3 387 . . . . . . . . . . . 12 (¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐶 = 𝐶 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
2826, 27sylibr 237 . . . . . . . . . . 11 (𝑀 ≠ (𝐶 / 𝐵) → ¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
2928adantr 484 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
30 0red 10633 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 0 ∈ ℝ)
31 fv1prop 45113 . . . . . . . . . . . . . . . . . 18 (0 ∈ ℝ → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
3230, 31syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 0)
3332oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = (𝐴 · 0))
34 recn 10616 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3534mul01d 10828 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
36353ad2ant1 1130 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐴 · 0) = 0)
3736adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · 0) = 0)
3833, 37eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = 0)
39 ovexd 7170 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 / 𝐵) ∈ V)
40 fv2prop 45114 . . . . . . . . . . . . . . . . . 18 ((𝐶 / 𝐵) ∈ V → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
4139, 40syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
4241oveq2d 7151 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = (𝐵 · (𝐶 / 𝐵)))
437recnd 10658 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4443adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℂ)
459recnd 10658 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℂ)
46453ad2ant2 1131 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
4746adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐵 ∈ ℂ)
4844, 47, 13divcan2d 11407 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · (𝐶 / 𝐵)) = 𝐶)
4942, 48eqtrd 2833 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = 𝐶)
5038, 49oveq12d 7153 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (0 + 𝐶))
5150adantl 485 . . . . . . . . . . . . 13 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (0 + 𝐶))
5243addid2d 10830 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (0 + 𝐶) = 𝐶)
5352adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (0 + 𝐶) = 𝐶)
5453adantl 485 . . . . . . . . . . . . 13 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (0 + 𝐶) = 𝐶)
5551, 54eqtrd 2833 . . . . . . . . . . . 12 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶)
5655eqeq1d 2800 . . . . . . . . . . 11 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶𝐶 = 𝐶))
5741eqeq1d 2800 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
5857adantl 485 . . . . . . . . . . 11 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
5956, 58bibi12d 349 . . . . . . . . . 10 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ (𝐶 = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
6029, 59mtbird 328 . . . . . . . . 9 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
61 fveq1 6644 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1))
6261oveq2d 7151 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)))
63 fveq1 6644 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))
6463oveq2d 7151 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)))
6562, 64oveq12d 7153 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))))
6665eqeq1d 2800 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶))
6763eqeq1d 2800 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝑝‘2) = 𝑀 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
6866, 67bibi12d 349 . . . . . . . . . . 11 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
6968notbid 321 . . . . . . . . . 10 (𝑝 = {⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
7069rspcev 3571 . . . . . . . . 9 (({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 0⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
7119, 60, 70syl2anc 587 . . . . . . . 8 ((𝑀 ≠ (𝐶 / 𝐵) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
7271ex 416 . . . . . . 7 (𝑀 ≠ (𝐶 / 𝐵) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
73 nne 2991 . . . . . . . 8 𝑀 ≠ (𝐶 / 𝐵) ↔ 𝑀 = (𝐶 / 𝐵))
74 1red 10631 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → 1 ∈ ℝ)
757, 10, 12redivcld 11457 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
7674, 75jca 515 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ))
7776adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ))
7816, 17prelrrx2 45127 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
7977, 78syl 17 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
8079adantl 485 . . . . . . . . . 10 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃)
81 eqneqall 2998 . . . . . . . . . . . . . . . . 17 (𝐴 = 0 → (𝐴 ≠ 0 → ¬ (𝐶 / 𝐵) = 𝑀))
8281com12 32 . . . . . . . . . . . . . . . 16 (𝐴 ≠ 0 → (𝐴 = 0 → ¬ (𝐶 / 𝐵) = 𝑀))
8382adantl 485 . . . . . . . . . . . . . . 15 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (𝐴 = 0 → ¬ (𝐶 / 𝐵) = 𝑀))
84 pm2.24 124 . . . . . . . . . . . . . . . . 17 ((𝐶 / 𝐵) = 𝑀 → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8584eqcoms 2806 . . . . . . . . . . . . . . . 16 (𝑀 = (𝐶 / 𝐵) → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8685adantr 484 . . . . . . . . . . . . . . 15 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (¬ (𝐶 / 𝐵) = 𝑀𝐴 = 0))
8783, 86impbid 215 . . . . . . . . . . . . . 14 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (𝐴 = 0 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
88 xor3 387 . . . . . . . . . . . . . 14 (¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐴 = 0 ↔ ¬ (𝐶 / 𝐵) = 𝑀))
8987, 88sylibr 237 . . . . . . . . . . . . 13 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → ¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀))
9089adantr 484 . . . . . . . . . . . 12 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀))
91 simprl1 1215 . . . . . . . . . . . . . . . . 17 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐴 ∈ ℝ)
9291recnd 10658 . . . . . . . . . . . . . . . 16 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐴 ∈ ℂ)
938adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐶 ∈ ℝ)
9493recnd 10658 . . . . . . . . . . . . . . . 16 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → 𝐶 ∈ ℂ)
9592, 94addcomd 10831 . . . . . . . . . . . . . . 15 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐴 + 𝐶) = (𝐶 + 𝐴))
9695eqeq1d 2800 . . . . . . . . . . . . . 14 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 + 𝐴) = 𝐶))
97 recn 10616 . . . . . . . . . . . . . . . . . . 19 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
9834, 97anim12ci 616 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
99983adant2 1128 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
10099adantr 484 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
101100adantl 485 . . . . . . . . . . . . . . 15 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ))
102 addid0 11048 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 + 𝐴) = 𝐶𝐴 = 0))
103101, 102syl 17 . . . . . . . . . . . . . 14 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐶 + 𝐴) = 𝐶𝐴 = 0))
10496, 103bitrd 282 . . . . . . . . . . . . 13 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ((𝐴 + 𝐶) = 𝐶𝐴 = 0))
105104bibi1d 347 . . . . . . . . . . . 12 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀) ↔ (𝐴 = 0 ↔ (𝐶 / 𝐵) = 𝑀)))
10690, 105mtbird 328 . . . . . . . . . . 11 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀))
107 1ex 10626 . . . . . . . . . . . . . . . . . . . 20 1 ∈ V
108107a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 1 ∈ V)
109 fv1prop 45113 . . . . . . . . . . . . . . . . . . 19 (1 ∈ V → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 1)
110108, 109syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1) = 1)
111110oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = (𝐴 · 1))
112 ax-1rid 10596 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
1131123ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) → (𝐴 · 1) = 𝐴)
114113adantr 484 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · 1) = 𝐴)
115111, 114eqtrd 2833 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) = 𝐴)
116 fv2prop 45114 . . . . . . . . . . . . . . . . . . 19 ((𝐶 / 𝐵) ∈ V → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
11739, 116syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = (𝐶 / 𝐵))
118117oveq2d 7151 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = (𝐵 · (𝐶 / 𝐵)))
1198recnd 10658 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → 𝐶 ∈ ℂ)
120119, 47, 13divcan2d 11407 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · (𝐶 / 𝐵)) = 𝐶)
121118, 120eqtrd 2833 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)) = 𝐶)
122115, 121oveq12d 7153 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = (𝐴 + 𝐶))
123122eqeq1d 2800 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ (𝐴 + 𝐶) = 𝐶))
124117eqeq1d 2800 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀 ↔ (𝐶 / 𝐵) = 𝑀))
125123, 124bibi12d 349 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
126125notbid 321 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
127126adantl 485 . . . . . . . . . . 11 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → (¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀) ↔ ¬ ((𝐴 + 𝐶) = 𝐶 ↔ (𝐶 / 𝐵) = 𝑀)))
128106, 127mpbird 260 . . . . . . . . . 10 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
129 fveq1 6644 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1))
130129oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)))
131 fveq1 6644 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))
132131oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2)))
133130, 132oveq12d 7153 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))))
134133eqeq1d 2800 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶))
135131eqeq1d 2800 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((𝑝‘2) = 𝑀 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀))
136134, 135bibi12d 349 . . . . . . . . . . . 12 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
137136notbid 321 . . . . . . . . . . 11 (𝑝 = {⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)))
138137rspcev 3571 . . . . . . . . . 10 (({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘1)) + (𝐵 · ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2))) = 𝐶 ↔ ({⟨1, 1⟩, ⟨2, (𝐶 / 𝐵)⟩}‘2) = 𝑀)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
13980, 128, 138syl2anc 587 . . . . . . . . 9 (((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) ∧ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
140139ex 416 . . . . . . . 8 ((𝑀 = (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
14173, 140sylanb 584 . . . . . . 7 ((¬ 𝑀 ≠ (𝐶 / 𝐵) ∧ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
14272, 141jaoi3 1056 . . . . . 6 ((𝑀 ≠ (𝐶 / 𝐵) ∨ 𝐴 ≠ 0) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
143142orcoms 869 . . . . 5 ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
144143com12 32 . . . 4 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
145 rexnal 3201 . . . 4 (∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) ↔ ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀))
146144, 145syl6ib 254 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → ((𝐴 ≠ 0 ∨ 𝑀 ≠ (𝐶 / 𝐵)) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
1475, 146syl5bi 245 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (¬ (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵)) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀)))
148147con4d 115 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) ∧ 𝐶 ∈ ℝ) ∧ 𝑀 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘2) = 𝑀) → (𝐴 = 0 ∧ 𝑀 = (𝐶 / 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  {cpr 4527  cop 4531  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   / cdiv 11286  2c2 11680  ℝ^crrx 23987  LineMcline 45141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688
This theorem is referenced by:  line2x  45168
  Copyright terms: Public domain W3C validator