Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2ylem Structured version   Visualization version   GIF version

Theorem line2ylem 47390
Description: Lemma for line2y 47394. This proof is based on counterexamples for the following cases: 1. 𝐶 ≠ 0: p = (0,0) (LHS of bicondional is false, RHS is true); 2. 𝐶 = 0 ∧ 𝐵 ≠ 0: p = (1,-A/B) (LHS of bicondional is true, RHS is false); 3. 𝐴 = 𝐵 = 𝐶 = 0: p = (1,1) (LHS of bicondional is true, RHS is false). (Contributed by AV, 4-Feb-2023.)
Hypotheses
Ref Expression
line2ylem.i 𝐼 = {1, 2}
line2ylem.p 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
line2ylem ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝑃,𝑝
Allowed substitution hint:   𝐼(𝑝)

Proof of Theorem line2ylem
StepHypRef Expression
1 ianor 980 . . . . 5 (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) ↔ (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0))
2 df-ne 2941 . . . . . . . . 9 (𝐶 ≠ 0 ↔ ¬ 𝐶 = 0)
3 0re 11212 . . . . . . . . . . . 12 0 ∈ ℝ
4 line2ylem.i . . . . . . . . . . . . 13 𝐼 = {1, 2}
5 line2ylem.p . . . . . . . . . . . . 13 𝑃 = (ℝ ↑m 𝐼)
64, 5prelrrx2 47352 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 0 ∈ ℝ) → {⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃)
73, 3, 6mp2an 690 . . . . . . . . . . 11 {⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃
8 eqneqall 2951 . . . . . . . . . . . . . . . 16 (𝐶 = 0 → (𝐶 ≠ 0 → ¬ 0 = 0))
98com12 32 . . . . . . . . . . . . . . 15 (𝐶 ≠ 0 → (𝐶 = 0 → ¬ 0 = 0))
10 eqid 2732 . . . . . . . . . . . . . . . 16 0 = 0
1110pm2.24i 150 . . . . . . . . . . . . . . 15 (¬ 0 = 0 → 𝐶 = 0)
129, 11impbid1 224 . . . . . . . . . . . . . 14 (𝐶 ≠ 0 → (𝐶 = 0 ↔ ¬ 0 = 0))
1312adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → (𝐶 = 0 ↔ ¬ 0 = 0))
14 xor3 383 . . . . . . . . . . . . 13 (¬ (𝐶 = 0 ↔ 0 = 0) ↔ (𝐶 = 0 ↔ ¬ 0 = 0))
1513, 14sylibr 233 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ¬ (𝐶 = 0 ↔ 0 = 0))
16 simp1 1136 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
1716recnd 11238 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
1817mul01d 11409 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 0) = 0)
19 simp2 1137 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℝ)
2019recnd 11238 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
2120mul01d 11409 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 · 0) = 0)
2218, 21oveq12d 7423 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 0) + (𝐵 · 0)) = (0 + 0))
23 00id 11385 . . . . . . . . . . . . . . . . 17 (0 + 0) = 0
2422, 23eqtrdi 2788 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 0) + (𝐵 · 0)) = 0)
2524eqeq1d 2734 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 𝐶))
26 eqcom 2739 . . . . . . . . . . . . . . 15 (0 = 𝐶𝐶 = 0)
2725, 26bitrdi 286 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶𝐶 = 0))
2827adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → (((𝐴 · 0) + (𝐵 · 0)) = 𝐶𝐶 = 0))
2928bibi1d 343 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ((((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0) ↔ (𝐶 = 0 ↔ 0 = 0)))
3015, 29mtbird 324 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0))
31 fveq1 6887 . . . . . . . . . . . . . . . . . 18 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘1) = ({⟨1, 0⟩, ⟨2, 0⟩}‘1))
32 1ex 11206 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
33 c0ex 11204 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
34 1ne2 12416 . . . . . . . . . . . . . . . . . . 19 1 ≠ 2
35 fvpr1g 7184 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0)
3632, 33, 34, 35mp3an 1461 . . . . . . . . . . . . . . . . . 18 ({⟨1, 0⟩, ⟨2, 0⟩}‘1) = 0
3731, 36eqtrdi 2788 . . . . . . . . . . . . . . . . 17 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘1) = 0)
3837oveq2d 7421 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 0))
39 fveq1 6887 . . . . . . . . . . . . . . . . . 18 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘2) = ({⟨1, 0⟩, ⟨2, 0⟩}‘2))
40 2ex 12285 . . . . . . . . . . . . . . . . . . 19 2 ∈ V
41 fvpr2g 7185 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0)
4240, 33, 34, 41mp3an 1461 . . . . . . . . . . . . . . . . . 18 ({⟨1, 0⟩, ⟨2, 0⟩}‘2) = 0
4339, 42eqtrdi 2788 . . . . . . . . . . . . . . . . 17 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝑝‘2) = 0)
4443oveq2d 7421 . . . . . . . . . . . . . . . 16 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · 0))
4538, 44oveq12d 7423 . . . . . . . . . . . . . . 15 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 0) + (𝐵 · 0)))
4645eqeq1d 2734 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 0) + (𝐵 · 0)) = 𝐶))
4737eqeq1d 2734 . . . . . . . . . . . . . 14 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((𝑝‘1) = 0 ↔ 0 = 0))
4846, 47bibi12d 345 . . . . . . . . . . . . 13 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)))
4948notbid 317 . . . . . . . . . . . 12 (𝑝 = {⟨1, 0⟩, ⟨2, 0⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)))
5049rspcev 3612 . . . . . . . . . . 11 (({⟨1, 0⟩, ⟨2, 0⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 0) + (𝐵 · 0)) = 𝐶 ↔ 0 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
517, 30, 50sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐶 ≠ 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
5251expcom 414 . . . . . . . . 9 (𝐶 ≠ 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
532, 52sylbir 234 . . . . . . . 8 𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
54 notnotb 314 . . . . . . . . . 10 (𝐶 = 0 ↔ ¬ ¬ 𝐶 = 0)
55 ianor 980 . . . . . . . . . . . 12 (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ↔ (¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0))
56 df-ne 2941 . . . . . . . . . . . . . . 15 (𝐵 ≠ 0 ↔ ¬ 𝐵 = 0)
57 1red 11211 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 1 ∈ ℝ)
5816adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐴 ∈ ℝ)
5958renegcld 11637 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → -𝐴 ∈ ℝ)
6019adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ∈ ℝ)
61 simprl 769 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ≠ 0)
6259, 60, 61redivcld 12038 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (-𝐴 / 𝐵) ∈ ℝ)
634, 5prelrrx2 47352 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ (-𝐴 / 𝐵) ∈ ℝ) → {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃)
6457, 62, 63syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃)
65 ax-1ne0 11175 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 0
6665neii 2942 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
6710, 662th 263 . . . . . . . . . . . . . . . . . . . 20 (0 = 0 ↔ ¬ 1 = 0)
68 xor3 383 . . . . . . . . . . . . . . . . . . . 20 (¬ (0 = 0 ↔ 1 = 0) ↔ (0 = 0 ↔ ¬ 1 = 0))
6967, 68mpbir 230 . . . . . . . . . . . . . . . . . . 19 ¬ (0 = 0 ↔ 1 = 0)
7017mulridd 11227 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 · 1) = 𝐴)
7170adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐴 · 1) = 𝐴)
7217negcld 11554 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → -𝐴 ∈ ℂ)
7372adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → -𝐴 ∈ ℂ)
7420adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐵 ∈ ℂ)
7573, 74, 61divcan2d 11988 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐵 · (-𝐴 / 𝐵)) = -𝐴)
7671, 75oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = (𝐴 + -𝐴))
7717negidd 11557 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 + -𝐴) = 0)
7877adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (𝐴 + -𝐴) = 0)
7976, 78eqtrd 2772 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 0)
80 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → 𝐶 = 0)
8179, 80eqeq12d 2748 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 0 = 0))
8281bibi1d 343 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ((((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0) ↔ (0 = 0 ↔ 1 = 0)))
8369, 82mtbiri 326 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0))
84 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1))
85 fvpr1g 7184 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1) = 1)
8632, 32, 34, 85mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘1) = 1
8784, 86eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘1) = 1)
8887oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 1))
89 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2))
90 ovex 7438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (-𝐴 / 𝐵) ∈ V
91 fvpr2g 7185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ V ∧ (-𝐴 / 𝐵) ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2) = (-𝐴 / 𝐵))
9240, 90, 34, 91mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩}‘2) = (-𝐴 / 𝐵)
9389, 92eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝑝‘2) = (-𝐴 / 𝐵))
9493oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · (-𝐴 / 𝐵)))
9588, 94oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))))
9695eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶))
9787eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((𝑝‘1) = 0 ↔ 1 = 0))
9896, 97bibi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)))
9998notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑝 = {⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)))
10099rspcev 3612 . . . . . . . . . . . . . . . . . 18 (({⟨1, 1⟩, ⟨2, (-𝐴 / 𝐵)⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 1) + (𝐵 · (-𝐴 / 𝐵))) = 𝐶 ↔ 1 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
10164, 83, 100syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝐵 ≠ 0 ∧ 𝐶 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
102101expcom 414 . . . . . . . . . . . . . . . 16 ((𝐵 ≠ 0 ∧ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
103102ex 413 . . . . . . . . . . . . . . 15 (𝐵 ≠ 0 → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
10456, 103sylbir 234 . . . . . . . . . . . . . 14 𝐵 = 0 → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
105 notnotb 314 . . . . . . . . . . . . . . 15 (𝐵 = 0 ↔ ¬ ¬ 𝐵 = 0)
106 nne 2944 . . . . . . . . . . . . . . . 16 𝐴 ≠ 0 ↔ 𝐴 = 0)
107106bicomi 223 . . . . . . . . . . . . . . 15 (𝐴 = 0 ↔ ¬ 𝐴 ≠ 0)
108 1re 11210 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ
1094, 5prelrrx2 47352 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → {⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃)
110108, 108, 109mp2an 690 . . . . . . . . . . . . . . . . . 18 {⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃
111 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 = 0 → (𝐴 · 1) = (0 · 1))
112111adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐴 · 1) = (0 · 1))
113 ax-1cn 11164 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
114113mul02i 11399 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 · 1) = 0
115112, 114eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐴 · 1) = 0)
116 oveq1 7412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 = 0 → (𝐵 · 1) = (0 · 1))
117116adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐵 · 1) = (0 · 1))
118117, 114eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐵 · 1) = 0)
119115, 118oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 = 0 ∧ 𝐴 = 0) → ((𝐴 · 1) + (𝐵 · 1)) = (0 + 0))
120119, 23eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 = 0 ∧ 𝐴 = 0) → ((𝐴 · 1) + (𝐵 · 1)) = 0)
121 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝐶 = 0 → 𝐶 = 0)
122120, 121eqeqan12d 2746 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 0 = 0))
123122bibi1d 343 . . . . . . . . . . . . . . . . . . 19 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ((((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0) ↔ (0 = 0 ↔ 1 = 0)))
12469, 123mtbiri 326 . . . . . . . . . . . . . . . . . 18 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0))
125 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘1) = ({⟨1, 1⟩, ⟨2, 1⟩}‘1))
126 fvpr1g 7184 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 1⟩}‘1) = 1)
12732, 32, 34, 126mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, 1⟩}‘1) = 1
128125, 127eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘1) = 1)
129128oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝐴 · (𝑝‘1)) = (𝐴 · 1))
130 fveq1 6887 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘2) = ({⟨1, 1⟩, ⟨2, 1⟩}‘2))
131 fvpr2g 7185 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2) → ({⟨1, 1⟩, ⟨2, 1⟩}‘2) = 1)
13240, 32, 34, 131mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨1, 1⟩, ⟨2, 1⟩}‘2) = 1
133130, 132eqtrdi 2788 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝑝‘2) = 1)
134133oveq2d 7421 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (𝐵 · (𝑝‘2)) = (𝐵 · 1))
135129, 134oveq12d 7423 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · 1) + (𝐵 · 1)))
136135eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · 1) + (𝐵 · 1)) = 𝐶))
137128eqeq1d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((𝑝‘1) = 0 ↔ 1 = 0))
138136, 137bibi12d 345 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → ((((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)))
139138notbid 317 . . . . . . . . . . . . . . . . . . 19 (𝑝 = {⟨1, 1⟩, ⟨2, 1⟩} → (¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)))
140139rspcev 3612 . . . . . . . . . . . . . . . . . 18 (({⟨1, 1⟩, ⟨2, 1⟩} ∈ 𝑃 ∧ ¬ (((𝐴 · 1) + (𝐵 · 1)) = 𝐶 ↔ 1 = 0)) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
141110, 124, 140sylancr 587 . . . . . . . . . . . . . . . . 17 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
142141a1d 25 . . . . . . . . . . . . . . . 16 (((𝐵 = 0 ∧ 𝐴 = 0) ∧ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
143142ex 413 . . . . . . . . . . . . . . 15 ((𝐵 = 0 ∧ 𝐴 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
144105, 107, 143syl2anbr 599 . . . . . . . . . . . . . 14 ((¬ ¬ 𝐵 = 0 ∧ ¬ 𝐴 ≠ 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
145104, 144jaoi3 1059 . . . . . . . . . . . . 13 ((¬ 𝐵 = 0 ∨ ¬ 𝐴 ≠ 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
146145orcoms 870 . . . . . . . . . . . 12 ((¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
14755, 146sylbi 216 . . . . . . . . . . 11 (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → (𝐶 = 0 → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
148147com12 32 . . . . . . . . . 10 (𝐶 = 0 → (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
14954, 148sylbir 234 . . . . . . . . 9 (¬ ¬ 𝐶 = 0 → (¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))))
150149imp 407 . . . . . . . 8 ((¬ ¬ 𝐶 = 0 ∧ ¬ (𝐴 ≠ 0 ∧ 𝐵 = 0)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
15153, 150jaoi3 1059 . . . . . . 7 ((¬ 𝐶 = 0 ∨ ¬ (𝐴 ≠ 0 ∧ 𝐵 = 0)) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
152151orcoms 870 . . . . . 6 ((¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0) → ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
153152com12 32 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((¬ (𝐴 ≠ 0 ∧ 𝐵 = 0) ∨ ¬ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
1541, 153biimtrid 241 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) → ∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
155 rexnal 3100 . . . 4 (∃𝑝𝑃 ¬ (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
156154, 155imbitrdi 250 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (¬ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0) → ¬ ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
157156con4d 115 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0)))
158 df-3an 1089 . 2 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) ↔ ((𝐴 ≠ 0 ∧ 𝐵 = 0) ∧ 𝐶 = 0))
159157, 158syl6ibr 251 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  {cpr 4629  cop 4633  cfv 6540  (class class class)co 7405  m cmap 8816  cc 11104  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  -cneg 11441   / cdiv 11867  2c2 12263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-2 12271
This theorem is referenced by:  line2y  47394
  Copyright terms: Public domain W3C validator