MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnn0fi Structured version   Visualization version   GIF version

Theorem ssnn0fi 13926
Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
ssnn0fi (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Distinct variable group:   𝑆,𝑠,𝑥

Proof of Theorem ssnn0fi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12433 . . . . . 6 0 ∈ ℕ0
21a1i 11 . . . . 5 (𝑆 = ∅ → 0 ∈ ℕ0)
3 breq1 5105 . . . . . . . 8 (𝑠 = 0 → (𝑠 < 𝑥 ↔ 0 < 𝑥))
43imbi1d 341 . . . . . . 7 (𝑠 = 0 → ((𝑠 < 𝑥𝑥𝑆) ↔ (0 < 𝑥𝑥𝑆)))
54ralbidv 3156 . . . . . 6 (𝑠 = 0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
65adantl 481 . . . . 5 ((𝑆 = ∅ ∧ 𝑠 = 0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
7 nnel 3039 . . . . . . . . 9 𝑥𝑆𝑥𝑆)
8 n0i 4299 . . . . . . . . 9 (𝑥𝑆 → ¬ 𝑆 = ∅)
97, 8sylbi 217 . . . . . . . 8 𝑥𝑆 → ¬ 𝑆 = ∅)
109con4i 114 . . . . . . 7 (𝑆 = ∅ → 𝑥𝑆)
1110a1d 25 . . . . . 6 (𝑆 = ∅ → (0 < 𝑥𝑥𝑆))
1211ralrimivw 3129 . . . . 5 (𝑆 = ∅ → ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆))
132, 6, 12rspcedvd 3587 . . . 4 (𝑆 = ∅ → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
14132a1d 26 . . 3 (𝑆 = ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
15 ltso 11230 . . . . . . 7 < Or ℝ
16 id 22 . . . . . . . . 9 (𝑆 ⊆ ℕ0𝑆 ⊆ ℕ0)
17 nn0ssre 12422 . . . . . . . . 9 0 ⊆ ℝ
1816, 17sstrdi 3956 . . . . . . . 8 (𝑆 ⊆ ℕ0𝑆 ⊆ ℝ)
19183anim3i 1154 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ))
20 fisup2g 9396 . . . . . . 7 (( < Or ℝ ∧ (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ)) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
2115, 19, 20sylancr 587 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
22 simp3 1138 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → 𝑆 ⊆ ℕ0)
23 breq2 5106 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2423notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥))
2524rspcva 3583 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → ¬ 𝑠 < 𝑥)
26252a1d 26 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥)))
2726expcom 413 . . . . . . . . . . . . . . . 16 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (𝑥𝑆 → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥))))
2827com24 95 . . . . . . . . . . . . . . 15 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → (𝑥 ∈ ℕ0 → (𝑥𝑆 → ¬ 𝑠 < 𝑥))))
2928imp31 417 . . . . . . . . . . . . . 14 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝑆 → ¬ 𝑠 < 𝑥))
307, 29biimtrid 242 . . . . . . . . . . . . 13 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (¬ 𝑥𝑆 → ¬ 𝑠 < 𝑥))
3130con4d 115 . . . . . . . . . . . 12 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥𝑥𝑆))
3231ralrimiva 3125 . . . . . . . . . . 11 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
3332ex 412 . . . . . . . . . 10 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3433adantr 480 . . . . . . . . 9 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3534com12 32 . . . . . . . 8 (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3635reximdva 3146 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
37 ssrexv 4013 . . . . . . 7 (𝑆 ⊆ ℕ0 → (∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3822, 36, 37sylsyld 61 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3921, 38mpd 15 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
40393exp 1119 . . . 4 (𝑆 ∈ Fin → (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4140com3l 89 . . 3 (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4214, 41pm2.61ine 3008 . 2 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
43 fzfi 13913 . . . 4 (0...𝑠) ∈ Fin
44 elfz2nn0 13555 . . . . . . . . . 10 (𝑦 ∈ (0...𝑠) ↔ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
4544notbii 320 . . . . . . . . 9 𝑦 ∈ (0...𝑠) ↔ ¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
46 3ianor 1106 . . . . . . . . 9 (¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠))
47 3orass 1089 . . . . . . . . 9 ((¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
4845, 46, 473bitri 297 . . . . . . . 8 𝑦 ∈ (0...𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
49 ssel 3937 . . . . . . . . . . . 12 (𝑆 ⊆ ℕ0 → (𝑦𝑆𝑦 ∈ ℕ0))
5049adantr 480 . . . . . . . . . . 11 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦𝑆𝑦 ∈ ℕ0))
5150adantr 480 . . . . . . . . . 10 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ ℕ0))
5251con3rr3 155 . . . . . . . . 9 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
53 notnotb 315 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0)
54 pm2.24 124 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5554adantl 481 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5655adantr 480 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5756com12 32 . . . . . . . . . . . . 13 𝑠 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
5857a1d 25 . . . . . . . . . . . 12 𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
59 breq2 5106 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑠 < 𝑥𝑠 < 𝑦))
60 neleq1 3035 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
6159, 60imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑠 < 𝑥𝑥𝑆) ↔ (𝑠 < 𝑦𝑦𝑆)))
6261rspcva 3583 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑠 < 𝑦𝑦𝑆))
63 nn0re 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
64 nn0re 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
65 ltnle 11229 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
6663, 64, 65syl2an 596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
67 df-nel 3030 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 ↔ ¬ 𝑦𝑆)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦𝑆 ↔ ¬ 𝑦𝑆))
6966, 68imbi12d 344 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) ↔ (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7069biimpd 229 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7170ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7271adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7372com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7562, 74mpid 44 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7675ex 412 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7776com13 88 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7877imp 406 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7978com13 88 . . . . . . . . . . . 12 𝑦𝑠 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8058, 79jaoi 857 . . . . . . . . . . 11 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8153, 80biimtrrid 243 . . . . . . . . . 10 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (¬ ¬ 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8281impcom 407 . . . . . . . . 9 ((¬ ¬ 𝑦 ∈ ℕ0 ∧ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8352, 82jaoi3 1060 . . . . . . . 8 ((¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8448, 83sylbi 217 . . . . . . 7 𝑦 ∈ (0...𝑠) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8584com12 32 . . . . . 6 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑦 ∈ (0...𝑠) → ¬ 𝑦𝑆))
8685con4d 115 . . . . 5 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ (0...𝑠)))
8786ssrdv 3949 . . . 4 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ⊆ (0...𝑠))
88 ssfi 9114 . . . 4 (((0...𝑠) ∈ Fin ∧ 𝑆 ⊆ (0...𝑠)) → 𝑆 ∈ Fin)
8943, 87, 88sylancr 587 . . 3 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ∈ Fin)
9089rexlimdva2 3136 . 2 (𝑆 ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → 𝑆 ∈ Fin))
9142, 90impbid 212 1 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  wral 3044  wrex 3053  wss 3911  c0 4292   class class class wbr 5102   Or wor 5538  (class class class)co 7369  Fincfn 8895  cr 11043  0cc0 11044   < clt 11184  cle 11185  0cn0 12418  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  rabssnn0fi  13927
  Copyright terms: Public domain W3C validator