MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnn0fi Structured version   Visualization version   GIF version

Theorem ssnn0fi 12992
Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
ssnn0fi (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Distinct variable group:   𝑆,𝑠,𝑥

Proof of Theorem ssnn0fi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11555 . . . . . 6 0 ∈ ℕ0
21a1i 11 . . . . 5 (𝑆 = ∅ → 0 ∈ ℕ0)
3 breq1 4812 . . . . . . . 8 (𝑠 = 0 → (𝑠 < 𝑥 ↔ 0 < 𝑥))
43imbi1d 332 . . . . . . 7 (𝑠 = 0 → ((𝑠 < 𝑥𝑥𝑆) ↔ (0 < 𝑥𝑥𝑆)))
54ralbidv 3133 . . . . . 6 (𝑠 = 0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
65adantl 473 . . . . 5 ((𝑆 = ∅ ∧ 𝑠 = 0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
7 nnel 3049 . . . . . . . . 9 𝑥𝑆𝑥𝑆)
8 n0i 4084 . . . . . . . . 9 (𝑥𝑆 → ¬ 𝑆 = ∅)
97, 8sylbi 208 . . . . . . . 8 𝑥𝑆 → ¬ 𝑆 = ∅)
109con4i 114 . . . . . . 7 (𝑆 = ∅ → 𝑥𝑆)
1110a1d 25 . . . . . 6 (𝑆 = ∅ → (0 < 𝑥𝑥𝑆))
1211ralrimivw 3114 . . . . 5 (𝑆 = ∅ → ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆))
132, 6, 12rspcedvd 3468 . . . 4 (𝑆 = ∅ → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
14132a1d 26 . . 3 (𝑆 = ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
15 ltso 10372 . . . . . . 7 < Or ℝ
16 id 22 . . . . . . . . 9 (𝑆 ⊆ ℕ0𝑆 ⊆ ℕ0)
17 nn0ssre 11542 . . . . . . . . 9 0 ⊆ ℝ
1816, 17syl6ss 3773 . . . . . . . 8 (𝑆 ⊆ ℕ0𝑆 ⊆ ℝ)
19183anim3i 1193 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ))
20 fisup2g 8581 . . . . . . 7 (( < Or ℝ ∧ (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ)) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
2115, 19, 20sylancr 581 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
22 simp3 1168 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → 𝑆 ⊆ ℕ0)
23 breq2 4813 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2423notbid 309 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥))
2524rspcva 3459 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → ¬ 𝑠 < 𝑥)
26252a1d 26 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥)))
2726expcom 402 . . . . . . . . . . . . . . . 16 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (𝑥𝑆 → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥))))
2827com24 95 . . . . . . . . . . . . . . 15 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → (𝑥 ∈ ℕ0 → (𝑥𝑆 → ¬ 𝑠 < 𝑥))))
2928imp31 408 . . . . . . . . . . . . . 14 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝑆 → ¬ 𝑠 < 𝑥))
307, 29syl5bi 233 . . . . . . . . . . . . 13 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (¬ 𝑥𝑆 → ¬ 𝑠 < 𝑥))
3130con4d 115 . . . . . . . . . . . 12 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥𝑥𝑆))
3231ralrimiva 3113 . . . . . . . . . . 11 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
3332ex 401 . . . . . . . . . 10 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3433adantr 472 . . . . . . . . 9 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3534com12 32 . . . . . . . 8 (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3635reximdva 3163 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
37 ssrexv 3827 . . . . . . 7 (𝑆 ⊆ ℕ0 → (∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3822, 36, 37sylsyld 61 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3921, 38mpd 15 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
40393exp 1148 . . . 4 (𝑆 ∈ Fin → (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4140com3l 89 . . 3 (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4214, 41pm2.61ine 3020 . 2 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
43 fzfi 12979 . . . . 5 (0...𝑠) ∈ Fin
44 elfz2nn0 12638 . . . . . . . . . . 11 (𝑦 ∈ (0...𝑠) ↔ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
4544notbii 311 . . . . . . . . . 10 𝑦 ∈ (0...𝑠) ↔ ¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
46 3ianor 1132 . . . . . . . . . 10 (¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠))
47 3orass 1110 . . . . . . . . . 10 ((¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
4845, 46, 473bitri 288 . . . . . . . . 9 𝑦 ∈ (0...𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
49 ssel 3755 . . . . . . . . . . . . 13 (𝑆 ⊆ ℕ0 → (𝑦𝑆𝑦 ∈ ℕ0))
5049adantr 472 . . . . . . . . . . . 12 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦𝑆𝑦 ∈ ℕ0))
5150adantr 472 . . . . . . . . . . 11 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ ℕ0))
5251con3rr3 152 . . . . . . . . . 10 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
53 notnotb 306 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0)
54 pm2.24 122 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ℕ0 → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5554adantl 473 . . . . . . . . . . . . . . . 16 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5655adantr 472 . . . . . . . . . . . . . . 15 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5756com12 32 . . . . . . . . . . . . . 14 𝑠 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
5857a1d 25 . . . . . . . . . . . . 13 𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
59 breq2 4813 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑠 < 𝑥𝑠 < 𝑦))
60 neleq1 3045 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
6159, 60imbi12d 335 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → ((𝑠 < 𝑥𝑥𝑆) ↔ (𝑠 < 𝑦𝑦𝑆)))
6261rspcva 3459 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑠 < 𝑦𝑦𝑆))
63 nn0re 11548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
64 nn0re 11548 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
65 ltnle 10371 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
6663, 64, 65syl2an 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
67 df-nel 3041 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦𝑆 ↔ ¬ 𝑦𝑆)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦𝑆 ↔ ¬ 𝑦𝑆))
6966, 68imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) ↔ (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7069biimpd 220 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7170ex 401 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7271adantl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7372com12 32 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7473adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7562, 74mpid 44 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7675ex 401 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7776com13 88 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7877imp 395 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7978com13 88 . . . . . . . . . . . . 13 𝑦𝑠 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8058, 79jaoi 883 . . . . . . . . . . . 12 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8153, 80syl5bir 234 . . . . . . . . . . 11 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (¬ ¬ 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8281impcom 396 . . . . . . . . . 10 ((¬ ¬ 𝑦 ∈ ℕ0 ∧ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8352, 82jaoi3 1083 . . . . . . . . 9 ((¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8448, 83sylbi 208 . . . . . . . 8 𝑦 ∈ (0...𝑠) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8584com12 32 . . . . . . 7 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑦 ∈ (0...𝑠) → ¬ 𝑦𝑆))
8685con4d 115 . . . . . 6 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ (0...𝑠)))
8786ssrdv 3767 . . . . 5 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ⊆ (0...𝑠))
88 ssfi 8387 . . . . 5 (((0...𝑠) ∈ Fin ∧ 𝑆 ⊆ (0...𝑠)) → 𝑆 ∈ Fin)
8943, 87, 88sylancr 581 . . . 4 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ∈ Fin)
9089ex 401 . . 3 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → 𝑆 ∈ Fin))
9190rexlimdva 3178 . 2 (𝑆 ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → 𝑆 ∈ Fin))
9242, 91impbid 203 1 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 873  w3o 1106  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wnel 3040  wral 3055  wrex 3056  wss 3732  c0 4079   class class class wbr 4809   Or wor 5197  (class class class)co 6842  Fincfn 8160  cr 10188  0cc0 10189   < clt 10328  cle 10329  0cn0 11538  ...cfz 12533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534
This theorem is referenced by:  rabssnn0fi  12993
  Copyright terms: Public domain W3C validator