MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnn0fi Structured version   Visualization version   GIF version

Theorem ssnn0fi 13937
Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
ssnn0fi (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Distinct variable group:   𝑆,𝑠,𝑥

Proof of Theorem ssnn0fi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 12474 . . . . . 6 0 ∈ ℕ0
21a1i 11 . . . . 5 (𝑆 = ∅ → 0 ∈ ℕ0)
3 breq1 5147 . . . . . . . 8 (𝑠 = 0 → (𝑠 < 𝑥 ↔ 0 < 𝑥))
43imbi1d 342 . . . . . . 7 (𝑠 = 0 → ((𝑠 < 𝑥𝑥𝑆) ↔ (0 < 𝑥𝑥𝑆)))
54ralbidv 3178 . . . . . 6 (𝑠 = 0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
65adantl 483 . . . . 5 ((𝑆 = ∅ ∧ 𝑠 = 0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
7 nnel 3057 . . . . . . . . 9 𝑥𝑆𝑥𝑆)
8 n0i 4331 . . . . . . . . 9 (𝑥𝑆 → ¬ 𝑆 = ∅)
97, 8sylbi 216 . . . . . . . 8 𝑥𝑆 → ¬ 𝑆 = ∅)
109con4i 114 . . . . . . 7 (𝑆 = ∅ → 𝑥𝑆)
1110a1d 25 . . . . . 6 (𝑆 = ∅ → (0 < 𝑥𝑥𝑆))
1211ralrimivw 3151 . . . . 5 (𝑆 = ∅ → ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆))
132, 6, 12rspcedvd 3613 . . . 4 (𝑆 = ∅ → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
14132a1d 26 . . 3 (𝑆 = ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
15 ltso 11281 . . . . . . 7 < Or ℝ
16 id 22 . . . . . . . . 9 (𝑆 ⊆ ℕ0𝑆 ⊆ ℕ0)
17 nn0ssre 12463 . . . . . . . . 9 0 ⊆ ℝ
1816, 17sstrdi 3992 . . . . . . . 8 (𝑆 ⊆ ℕ0𝑆 ⊆ ℝ)
19183anim3i 1155 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ))
20 fisup2g 9450 . . . . . . 7 (( < Or ℝ ∧ (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ)) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
2115, 19, 20sylancr 588 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
22 simp3 1139 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → 𝑆 ⊆ ℕ0)
23 breq2 5148 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2423notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥))
2524rspcva 3609 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → ¬ 𝑠 < 𝑥)
26252a1d 26 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥)))
2726expcom 415 . . . . . . . . . . . . . . . 16 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (𝑥𝑆 → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥))))
2827com24 95 . . . . . . . . . . . . . . 15 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → (𝑥 ∈ ℕ0 → (𝑥𝑆 → ¬ 𝑠 < 𝑥))))
2928imp31 419 . . . . . . . . . . . . . 14 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝑆 → ¬ 𝑠 < 𝑥))
307, 29biimtrid 241 . . . . . . . . . . . . 13 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (¬ 𝑥𝑆 → ¬ 𝑠 < 𝑥))
3130con4d 115 . . . . . . . . . . . 12 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥𝑥𝑆))
3231ralrimiva 3147 . . . . . . . . . . 11 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
3332ex 414 . . . . . . . . . 10 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3433adantr 482 . . . . . . . . 9 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3534com12 32 . . . . . . . 8 (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3635reximdva 3169 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
37 ssrexv 4049 . . . . . . 7 (𝑆 ⊆ ℕ0 → (∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3822, 36, 37sylsyld 61 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3921, 38mpd 15 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
40393exp 1120 . . . 4 (𝑆 ∈ Fin → (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4140com3l 89 . . 3 (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4214, 41pm2.61ine 3026 . 2 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
43 fzfi 13924 . . . 4 (0...𝑠) ∈ Fin
44 elfz2nn0 13579 . . . . . . . . . 10 (𝑦 ∈ (0...𝑠) ↔ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
4544notbii 320 . . . . . . . . 9 𝑦 ∈ (0...𝑠) ↔ ¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
46 3ianor 1108 . . . . . . . . 9 (¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠))
47 3orass 1091 . . . . . . . . 9 ((¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
4845, 46, 473bitri 297 . . . . . . . 8 𝑦 ∈ (0...𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
49 ssel 3973 . . . . . . . . . . . 12 (𝑆 ⊆ ℕ0 → (𝑦𝑆𝑦 ∈ ℕ0))
5049adantr 482 . . . . . . . . . . 11 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦𝑆𝑦 ∈ ℕ0))
5150adantr 482 . . . . . . . . . 10 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ ℕ0))
5251con3rr3 155 . . . . . . . . 9 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
53 notnotb 315 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0)
54 pm2.24 124 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5554adantl 483 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5655adantr 482 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5756com12 32 . . . . . . . . . . . . 13 𝑠 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
5857a1d 25 . . . . . . . . . . . 12 𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
59 breq2 5148 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑠 < 𝑥𝑠 < 𝑦))
60 neleq1 3053 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
6159, 60imbi12d 345 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑠 < 𝑥𝑥𝑆) ↔ (𝑠 < 𝑦𝑦𝑆)))
6261rspcva 3609 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑠 < 𝑦𝑦𝑆))
63 nn0re 12468 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
64 nn0re 12468 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
65 ltnle 11280 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
6663, 64, 65syl2an 597 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
67 df-nel 3048 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 ↔ ¬ 𝑦𝑆)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦𝑆 ↔ ¬ 𝑦𝑆))
6966, 68imbi12d 345 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) ↔ (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7069biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7170ex 414 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7271adantl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7372com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7473adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7562, 74mpid 44 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7675ex 414 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7776com13 88 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7877imp 408 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7978com13 88 . . . . . . . . . . . 12 𝑦𝑠 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8058, 79jaoi 856 . . . . . . . . . . 11 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8153, 80biimtrrid 242 . . . . . . . . . 10 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (¬ ¬ 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8281impcom 409 . . . . . . . . 9 ((¬ ¬ 𝑦 ∈ ℕ0 ∧ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8352, 82jaoi3 1060 . . . . . . . 8 ((¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8448, 83sylbi 216 . . . . . . 7 𝑦 ∈ (0...𝑠) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8584com12 32 . . . . . 6 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑦 ∈ (0...𝑠) → ¬ 𝑦𝑆))
8685con4d 115 . . . . 5 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ (0...𝑠)))
8786ssrdv 3986 . . . 4 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ⊆ (0...𝑠))
88 ssfi 9161 . . . 4 (((0...𝑠) ∈ Fin ∧ 𝑆 ⊆ (0...𝑠)) → 𝑆 ∈ Fin)
8943, 87, 88sylancr 588 . . 3 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ∈ Fin)
9089rexlimdva2 3158 . 2 (𝑆 ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → 𝑆 ∈ Fin))
9142, 90impbid 211 1 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wnel 3047  wral 3062  wrex 3071  wss 3946  c0 4320   class class class wbr 5144   Or wor 5583  (class class class)co 7396  Fincfn 8927  cr 11096  0cc0 11097   < clt 11235  cle 11236  0cn0 12459  ...cfz 13471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-1st 7962  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-1o 8453  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-fin 8931  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-nn 12200  df-n0 12460  df-z 12546  df-uz 12810  df-fz 13472
This theorem is referenced by:  rabssnn0fi  13938
  Copyright terms: Public domain W3C validator