| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 0nn0 12543 | . . . . . 6
⊢ 0 ∈
ℕ0 | 
| 2 | 1 | a1i 11 | . . . . 5
⊢ (𝑆 = ∅ → 0 ∈
ℕ0) | 
| 3 |  | breq1 5145 | . . . . . . . 8
⊢ (𝑠 = 0 → (𝑠 < 𝑥 ↔ 0 < 𝑥)) | 
| 4 | 3 | imbi1d 341 | . . . . . . 7
⊢ (𝑠 = 0 → ((𝑠 < 𝑥 → 𝑥 ∉ 𝑆) ↔ (0 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 5 | 4 | ralbidv 3177 | . . . . . 6
⊢ (𝑠 = 0 → (∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → 𝑥 ∉ 𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 6 | 5 | adantl 481 | . . . . 5
⊢ ((𝑆 = ∅ ∧ 𝑠 = 0) → (∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → 𝑥 ∉ 𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 7 |  | nnel 3055 | . . . . . . . . 9
⊢ (¬
𝑥 ∉ 𝑆 ↔ 𝑥 ∈ 𝑆) | 
| 8 |  | n0i 4339 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝑆 → ¬ 𝑆 = ∅) | 
| 9 | 7, 8 | sylbi 217 | . . . . . . . 8
⊢ (¬
𝑥 ∉ 𝑆 → ¬ 𝑆 = ∅) | 
| 10 | 9 | con4i 114 | . . . . . . 7
⊢ (𝑆 = ∅ → 𝑥 ∉ 𝑆) | 
| 11 | 10 | a1d 25 | . . . . . 6
⊢ (𝑆 = ∅ → (0 < 𝑥 → 𝑥 ∉ 𝑆)) | 
| 12 | 11 | ralrimivw 3149 | . . . . 5
⊢ (𝑆 = ∅ → ∀𝑥 ∈ ℕ0 (0
< 𝑥 → 𝑥 ∉ 𝑆)) | 
| 13 | 2, 6, 12 | rspcedvd 3623 | . . . 4
⊢ (𝑆 = ∅ → ∃𝑠 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) | 
| 14 | 13 | 2a1d 26 | . . 3
⊢ (𝑆 = ∅ → (𝑆 ⊆ ℕ0
→ (𝑆 ∈ Fin →
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)))) | 
| 15 |  | ltso 11342 | . . . . . . 7
⊢  < Or
ℝ | 
| 16 |  | id 22 | . . . . . . . . 9
⊢ (𝑆 ⊆ ℕ0
→ 𝑆 ⊆
ℕ0) | 
| 17 |  | nn0ssre 12532 | . . . . . . . . 9
⊢
ℕ0 ⊆ ℝ | 
| 18 | 16, 17 | sstrdi 3995 | . . . . . . . 8
⊢ (𝑆 ⊆ ℕ0
→ 𝑆 ⊆
ℝ) | 
| 19 | 18 | 3anim3i 1154 | . . . . . . 7
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ (𝑆 ∈ Fin ∧
𝑆 ≠ ∅ ∧ 𝑆 ⊆
ℝ)) | 
| 20 |  | fisup2g 9509 | . . . . . . 7
⊢ (( <
Or ℝ ∧ (𝑆 ∈
Fin ∧ 𝑆 ≠ ∅
∧ 𝑆 ⊆ ℝ))
→ ∃𝑠 ∈
𝑆 (∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧))) | 
| 21 | 15, 19, 20 | sylancr 587 | . . . . . 6
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ ∃𝑠 ∈
𝑆 (∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧))) | 
| 22 |  | simp3 1138 | . . . . . . 7
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ 𝑆 ⊆
ℕ0) | 
| 23 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (𝑠 < 𝑦 ↔ 𝑠 < 𝑥)) | 
| 24 | 23 | notbid 318 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → (¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥)) | 
| 25 | 24 | rspcva 3619 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦) → ¬ 𝑠 < 𝑥) | 
| 26 | 25 | 2a1d 26 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦) → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
∧ 𝑠 ∈ 𝑆) → ¬ 𝑠 < 𝑥))) | 
| 27 | 26 | expcom 413 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 → (𝑥 ∈ 𝑆 → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
∧ 𝑠 ∈ 𝑆) → ¬ 𝑠 < 𝑥)))) | 
| 28 | 27 | com24 95 | . . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆) → (𝑥 ∈ ℕ0 → (𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥)))) | 
| 29 | 28 | imp31 417 | . . . . . . . . . . . . . 14
⊢
(((∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ 𝑆 → ¬ 𝑠 < 𝑥)) | 
| 30 | 7, 29 | biimtrid 242 | . . . . . . . . . . . . 13
⊢
(((∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ ℕ0) → (¬
𝑥 ∉ 𝑆 → ¬ 𝑠 < 𝑥)) | 
| 31 | 30 | con4d 115 | . . . . . . . . . . . 12
⊢
(((∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) | 
| 32 | 31 | ralrimiva 3145 | . . . . . . . . . . 11
⊢
((∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) | 
| 33 | 32 | ex 412 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 34 | 33 | adantr 480 | . . . . . . . . 9
⊢
((∀𝑦 ∈
𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧)) → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠 ∈ 𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 35 | 34 | com12 32 | . . . . . . . 8
⊢ (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
∧ 𝑠 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 36 | 35 | reximdva 3167 | . . . . . . 7
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ (∃𝑠 ∈
𝑆 (∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ 𝑆 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 37 |  | ssrexv 4052 | . . . . . . 7
⊢ (𝑆 ⊆ ℕ0
→ (∃𝑠 ∈
𝑆 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → 𝑥 ∉ 𝑆) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 38 | 22, 36, 37 | sylsyld 61 | . . . . . 6
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ (∃𝑠 ∈
𝑆 (∀𝑦 ∈ 𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧 ∈ 𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 39 | 21, 38 | mpd 15 | . . . . 5
⊢ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0)
→ ∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) | 
| 40 | 39 | 3exp 1119 | . . . 4
⊢ (𝑆 ∈ Fin → (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0
→ ∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)))) | 
| 41 | 40 | com3l 89 | . . 3
⊢ (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0
→ (𝑆 ∈ Fin →
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)))) | 
| 42 | 14, 41 | pm2.61ine 3024 | . 2
⊢ (𝑆 ⊆ ℕ0
→ (𝑆 ∈ Fin →
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) | 
| 43 |  | fzfi 14014 | . . . 4
⊢
(0...𝑠) ∈
Fin | 
| 44 |  | elfz2nn0 13659 | . . . . . . . . . 10
⊢ (𝑦 ∈ (0...𝑠) ↔ (𝑦 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0
∧ 𝑦 ≤ 𝑠)) | 
| 45 | 44 | notbii 320 | . . . . . . . . 9
⊢ (¬
𝑦 ∈ (0...𝑠) ↔ ¬ (𝑦 ∈ ℕ0
∧ 𝑠 ∈
ℕ0 ∧ 𝑦
≤ 𝑠)) | 
| 46 |  | 3ianor 1106 | . . . . . . . . 9
⊢ (¬
(𝑦 ∈
ℕ0 ∧ 𝑠
∈ ℕ0 ∧ 𝑦 ≤ 𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨
¬ 𝑦 ≤ 𝑠)) | 
| 47 |  | 3orass 1089 | . . . . . . . . 9
⊢ ((¬
𝑦 ∈
ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨
¬ 𝑦 ≤ 𝑠))) | 
| 48 | 45, 46, 47 | 3bitri 297 | . . . . . . . 8
⊢ (¬
𝑦 ∈ (0...𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨
(¬ 𝑠 ∈
ℕ0 ∨ ¬ 𝑦 ≤ 𝑠))) | 
| 49 |  | ssel 3976 | . . . . . . . . . . . 12
⊢ (𝑆 ⊆ ℕ0
→ (𝑦 ∈ 𝑆 → 𝑦 ∈
ℕ0)) | 
| 50 | 49 | adantr 480 | . . . . . . . . . . 11
⊢ ((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) → (𝑦 ∈ 𝑆 → 𝑦 ∈
ℕ0)) | 
| 51 | 50 | adantr 480 | . . . . . . . . . 10
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → (𝑦 ∈ 𝑆 → 𝑦 ∈
ℕ0)) | 
| 52 | 51 | con3rr3 155 | . . . . . . . . 9
⊢ (¬
𝑦 ∈
ℕ0 → (((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆)) | 
| 53 |  | notnotb 315 | . . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ0
↔ ¬ ¬ 𝑦 ∈
ℕ0) | 
| 54 |  | pm2.24 124 | . . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ℕ0
→ (¬ 𝑠 ∈
ℕ0 → ¬ 𝑦 ∈ 𝑆)) | 
| 55 | 54 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) → (¬ 𝑠 ∈ ℕ0 → ¬
𝑦 ∈ 𝑆)) | 
| 56 | 55 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → (¬ 𝑠 ∈ ℕ0 → ¬
𝑦 ∈ 𝑆)) | 
| 57 | 56 | com12 32 | . . . . . . . . . . . . 13
⊢ (¬
𝑠 ∈
ℕ0 → (((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆)) | 
| 58 | 57 | a1d 25 | . . . . . . . . . . . 12
⊢ (¬
𝑠 ∈
ℕ0 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆))) | 
| 59 |  | breq2 5146 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑠 < 𝑥 ↔ 𝑠 < 𝑦)) | 
| 60 |  | neleq1 3051 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑦 → (𝑥 ∉ 𝑆 ↔ 𝑦 ∉ 𝑆)) | 
| 61 | 59, 60 | imbi12d 344 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → ((𝑠 < 𝑥 → 𝑥 ∉ 𝑆) ↔ (𝑠 < 𝑦 → 𝑦 ∉ 𝑆))) | 
| 62 | 61 | rspcva 3619 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → (𝑠 < 𝑦 → 𝑦 ∉ 𝑆)) | 
| 63 |  | nn0re 12537 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 ∈ ℕ0
→ 𝑠 ∈
ℝ) | 
| 64 |  | nn0re 12537 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℝ) | 
| 65 |  | ltnle 11341 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠)) | 
| 66 | 63, 64, 65 | syl2an 596 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑠 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑠)) | 
| 67 |  | df-nel 3046 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆) | 
| 68 | 67 | a1i 11 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑠 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑦 ∉ 𝑆 ↔ ¬ 𝑦 ∈ 𝑆)) | 
| 69 | 66, 68 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑠 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) ↔ (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆))) | 
| 70 | 69 | biimpd 229 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑠 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) → (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆))) | 
| 71 | 70 | ex 412 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 ∈ ℕ0
→ (𝑦 ∈
ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) → (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 72 | 71 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) → (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 73 | 72 | com12 32 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ ℕ0
→ ((𝑆 ⊆
ℕ0 ∧ 𝑠
∈ ℕ0) → ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) → (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 74 | 73 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
→ ((𝑠 < 𝑦 → 𝑦 ∉ 𝑆) → (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 75 | 62, 74 | mpid 44 | . . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
→ (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆))) | 
| 76 | 75 | ex 412 | . . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℕ0
→ (∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆) → ((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
→ (¬ 𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 77 | 76 | com13 88 | . . . . . . . . . . . . . 14
⊢ ((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆) → (𝑦 ∈ ℕ0 → (¬
𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆)))) | 
| 78 | 77 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → (𝑦 ∈ ℕ0 → (¬
𝑦 ≤ 𝑠 → ¬ 𝑦 ∈ 𝑆))) | 
| 79 | 78 | com13 88 | . . . . . . . . . . . 12
⊢ (¬
𝑦 ≤ 𝑠 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆))) | 
| 80 | 58, 79 | jaoi 857 | . . . . . . . . . . 11
⊢ ((¬
𝑠 ∈
ℕ0 ∨ ¬ 𝑦 ≤ 𝑠) → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆))) | 
| 81 | 53, 80 | biimtrrid 243 | . . . . . . . . . 10
⊢ ((¬
𝑠 ∈
ℕ0 ∨ ¬ 𝑦 ≤ 𝑠) → (¬ ¬ 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆))) | 
| 82 | 81 | impcom 407 | . . . . . . . . 9
⊢ ((¬
¬ 𝑦 ∈
ℕ0 ∧ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠)) → (((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆)) | 
| 83 | 52, 82 | jaoi3 1060 | . . . . . . . 8
⊢ ((¬
𝑦 ∈
ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦 ≤ 𝑠)) → (((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆)) | 
| 84 | 48, 83 | sylbi 217 | . . . . . . 7
⊢ (¬
𝑦 ∈ (0...𝑠) → (((𝑆 ⊆ ℕ0 ∧ 𝑠 ∈ ℕ0)
∧ ∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → 𝑥 ∉ 𝑆)) → ¬ 𝑦 ∈ 𝑆)) | 
| 85 | 84 | com12 32 | . . . . . 6
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → (¬ 𝑦 ∈ (0...𝑠) → ¬ 𝑦 ∈ 𝑆)) | 
| 86 | 85 | con4d 115 | . . . . 5
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → (𝑦 ∈ 𝑆 → 𝑦 ∈ (0...𝑠))) | 
| 87 | 86 | ssrdv 3988 | . . . 4
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → 𝑆 ⊆ (0...𝑠)) | 
| 88 |  | ssfi 9214 | . . . 4
⊢
(((0...𝑠) ∈ Fin
∧ 𝑆 ⊆ (0...𝑠)) → 𝑆 ∈ Fin) | 
| 89 | 43, 87, 88 | sylancr 587 | . . 3
⊢ (((𝑆 ⊆ ℕ0
∧ 𝑠 ∈
ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆)) → 𝑆 ∈ Fin) | 
| 90 | 89 | rexlimdva2 3156 | . 2
⊢ (𝑆 ⊆ ℕ0
→ (∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆) → 𝑆 ∈ Fin)) | 
| 91 | 42, 90 | impbid 212 | 1
⊢ (𝑆 ⊆ ℕ0
→ (𝑆 ∈ Fin ↔
∃𝑠 ∈
ℕ0 ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → 𝑥 ∉ 𝑆))) |