MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnn0fi Structured version   Visualization version   GIF version

Theorem ssnn0fi 13348
Description: A subset of the nonnegative integers is finite if and only if there is a nonnegative integer so that all integers greater than this integer are not contained in the subset. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
ssnn0fi (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Distinct variable group:   𝑆,𝑠,𝑥

Proof of Theorem ssnn0fi
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 11906 . . . . . 6 0 ∈ ℕ0
21a1i 11 . . . . 5 (𝑆 = ∅ → 0 ∈ ℕ0)
3 breq1 5066 . . . . . . . 8 (𝑠 = 0 → (𝑠 < 𝑥 ↔ 0 < 𝑥))
43imbi1d 343 . . . . . . 7 (𝑠 = 0 → ((𝑠 < 𝑥𝑥𝑆) ↔ (0 < 𝑥𝑥𝑆)))
54ralbidv 3202 . . . . . 6 (𝑠 = 0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
65adantl 482 . . . . 5 ((𝑆 = ∅ ∧ 𝑠 = 0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) ↔ ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆)))
7 nnel 3137 . . . . . . . . 9 𝑥𝑆𝑥𝑆)
8 n0i 4303 . . . . . . . . 9 (𝑥𝑆 → ¬ 𝑆 = ∅)
97, 8sylbi 218 . . . . . . . 8 𝑥𝑆 → ¬ 𝑆 = ∅)
109con4i 114 . . . . . . 7 (𝑆 = ∅ → 𝑥𝑆)
1110a1d 25 . . . . . 6 (𝑆 = ∅ → (0 < 𝑥𝑥𝑆))
1211ralrimivw 3188 . . . . 5 (𝑆 = ∅ → ∀𝑥 ∈ ℕ0 (0 < 𝑥𝑥𝑆))
132, 6, 12rspcedvd 3630 . . . 4 (𝑆 = ∅ → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
14132a1d 26 . . 3 (𝑆 = ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
15 ltso 10715 . . . . . . 7 < Or ℝ
16 id 22 . . . . . . . . 9 (𝑆 ⊆ ℕ0𝑆 ⊆ ℕ0)
17 nn0ssre 11895 . . . . . . . . 9 0 ⊆ ℝ
1816, 17sstrdi 3983 . . . . . . . 8 (𝑆 ⊆ ℕ0𝑆 ⊆ ℝ)
19183anim3i 1148 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ))
20 fisup2g 8926 . . . . . . 7 (( < Or ℝ ∧ (𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℝ)) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
2115, 19, 20sylancr 587 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)))
22 simp3 1132 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → 𝑆 ⊆ ℕ0)
23 breq2 5067 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2423notbid 319 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑥 → (¬ 𝑠 < 𝑦 ↔ ¬ 𝑠 < 𝑥))
2524rspcva 3625 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → ¬ 𝑠 < 𝑥)
26252a1d 26 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑦𝑆 ¬ 𝑠 < 𝑦) → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥)))
2726expcom 414 . . . . . . . . . . . . . . . 16 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (𝑥𝑆 → (𝑥 ∈ ℕ0 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ¬ 𝑠 < 𝑥))))
2827com24 95 . . . . . . . . . . . . . . 15 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → (𝑥 ∈ ℕ0 → (𝑥𝑆 → ¬ 𝑠 < 𝑥))))
2928imp31 418 . . . . . . . . . . . . . 14 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑥𝑆 → ¬ 𝑠 < 𝑥))
307, 29syl5bi 243 . . . . . . . . . . . . 13 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (¬ 𝑥𝑆 → ¬ 𝑠 < 𝑥))
3130con4d 115 . . . . . . . . . . . 12 (((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥𝑥𝑆))
3231ralrimiva 3187 . . . . . . . . . . 11 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
3332ex 413 . . . . . . . . . 10 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3433adantr 481 . . . . . . . . 9 ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3534com12 32 . . . . . . . 8 (((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) ∧ 𝑠𝑆) → ((∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3635reximdva 3279 . . . . . . 7 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
37 ssrexv 4038 . . . . . . 7 (𝑆 ⊆ ℕ0 → (∃𝑠𝑆𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3822, 36, 37sylsyld 61 . . . . . 6 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → (∃𝑠𝑆 (∀𝑦𝑆 ¬ 𝑠 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑠 → ∃𝑧𝑆 𝑦 < 𝑧)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
3921, 38mpd 15 . . . . 5 ((𝑆 ∈ Fin ∧ 𝑆 ≠ ∅ ∧ 𝑆 ⊆ ℕ0) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))
40393exp 1113 . . . 4 (𝑆 ∈ Fin → (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4140com3l 89 . . 3 (𝑆 ≠ ∅ → (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆))))
4214, 41pm2.61ine 3105 . 2 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
43 fzfi 13335 . . . 4 (0...𝑠) ∈ Fin
44 elfz2nn0 12993 . . . . . . . . . 10 (𝑦 ∈ (0...𝑠) ↔ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
4544notbii 321 . . . . . . . . 9 𝑦 ∈ (0...𝑠) ↔ ¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠))
46 3ianor 1101 . . . . . . . . 9 (¬ (𝑦 ∈ ℕ0𝑠 ∈ ℕ0𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠))
47 3orass 1084 . . . . . . . . 9 ((¬ 𝑦 ∈ ℕ0 ∨ ¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
4845, 46, 473bitri 298 . . . . . . . 8 𝑦 ∈ (0...𝑠) ↔ (¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)))
49 ssel 3965 . . . . . . . . . . . 12 (𝑆 ⊆ ℕ0 → (𝑦𝑆𝑦 ∈ ℕ0))
5049adantr 481 . . . . . . . . . . 11 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦𝑆𝑦 ∈ ℕ0))
5150adantr 481 . . . . . . . . . 10 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ ℕ0))
5251con3rr3 158 . . . . . . . . 9 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
53 notnotb 316 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 ↔ ¬ ¬ 𝑦 ∈ ℕ0)
54 pm2.24 124 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ℕ0 → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5554adantl 482 . . . . . . . . . . . . . . 15 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5655adantr 481 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑠 ∈ ℕ0 → ¬ 𝑦𝑆))
5756com12 32 . . . . . . . . . . . . 13 𝑠 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
5857a1d 25 . . . . . . . . . . . 12 𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
59 breq2 5067 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑠 < 𝑥𝑠 < 𝑦))
60 neleq1 3133 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑥𝑆𝑦𝑆))
6159, 60imbi12d 346 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑠 < 𝑥𝑥𝑆) ↔ (𝑠 < 𝑦𝑦𝑆)))
6261rspcva 3625 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑠 < 𝑦𝑦𝑆))
63 nn0re 11900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ℕ0𝑠 ∈ ℝ)
64 nn0re 11900 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
65 ltnle 10714 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
6663, 64, 65syl2an 595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑠 < 𝑦 ↔ ¬ 𝑦𝑠))
67 df-nel 3129 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝑆 ↔ ¬ 𝑦𝑆)
6867a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑦𝑆 ↔ ¬ 𝑦𝑆))
6966, 68imbi12d 346 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) ↔ (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7069biimpd 230 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7170ex 413 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ℕ0 → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7271adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7372com12 32 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ℕ0 → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7473adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → ((𝑠 < 𝑦𝑦𝑆) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7562, 74mpid 44 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7675ex 413 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7776com13 88 . . . . . . . . . . . . . 14 ((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆))))
7877imp 407 . . . . . . . . . . . . 13 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦 ∈ ℕ0 → (¬ 𝑦𝑠 → ¬ 𝑦𝑆)))
7978com13 88 . . . . . . . . . . . 12 𝑦𝑠 → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8058, 79jaoi 853 . . . . . . . . . . 11 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8153, 80syl5bir 244 . . . . . . . . . 10 ((¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠) → (¬ ¬ 𝑦 ∈ ℕ0 → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆)))
8281impcom 408 . . . . . . . . 9 ((¬ ¬ 𝑦 ∈ ℕ0 ∧ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8352, 82jaoi3 1054 . . . . . . . 8 ((¬ 𝑦 ∈ ℕ0 ∨ (¬ 𝑠 ∈ ℕ0 ∨ ¬ 𝑦𝑠)) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8448, 83sylbi 218 . . . . . . 7 𝑦 ∈ (0...𝑠) → (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → ¬ 𝑦𝑆))
8584com12 32 . . . . . 6 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (¬ 𝑦 ∈ (0...𝑠) → ¬ 𝑦𝑆))
8685con4d 115 . . . . 5 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → (𝑦𝑆𝑦 ∈ (0...𝑠)))
8786ssrdv 3977 . . . 4 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ⊆ (0...𝑠))
88 ssfi 8732 . . . 4 (((0...𝑠) ∈ Fin ∧ 𝑆 ⊆ (0...𝑠)) → 𝑆 ∈ Fin)
8943, 87, 88sylancr 587 . . 3 (((𝑆 ⊆ ℕ0𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)) → 𝑆 ∈ Fin)
9089rexlimdva2 3292 . 2 (𝑆 ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆) → 𝑆 ∈ Fin))
9142, 90impbid 213 1 (𝑆 ⊆ ℕ0 → (𝑆 ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wnel 3128  wral 3143  wrex 3144  wss 3940  c0 4295   class class class wbr 5063   Or wor 5472  (class class class)co 7150  Fincfn 8503  cr 10530  0cc0 10531   < clt 10669  cle 10670  0cn0 11891  ...cfz 12887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888
This theorem is referenced by:  rabssnn0fi  13349
  Copyright terms: Public domain W3C validator