![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mpo0 | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
2mpo0.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
2mpo0.u | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
Ref | Expression |
---|---|
2mpo0 | ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 979 | . 2 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) ↔ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷))) | |
2 | 2mpo0.o | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | |
3 | 2 | mpondm0 7666 | . . . . 5 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) |
4 | 3 | oveqd 7441 | . . . 4 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) |
5 | 0ov 7461 | . . . 4 ⊢ (𝑆∅𝑇) = ∅ | |
6 | 4, 5 | eqtrdi 2782 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
7 | notnotb 314 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ ¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
8 | 2mpo0.u | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) | |
9 | 8 | adantr 479 | . . . . . 6 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
10 | 9 | oveqd 7441 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇)) |
11 | eqid 2726 | . . . . . . 7 ⊢ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) | |
12 | 11 | mpondm0 7666 | . . . . . 6 ⊢ (¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
13 | 12 | adantl 480 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
14 | 10, 13 | eqtrd 2766 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
15 | 7, 14 | sylanbr 580 | . . 3 ⊢ ((¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
16 | 6, 15 | jaoi3 1058 | . 2 ⊢ ((¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
17 | 1, 16 | sylbi 216 | 1 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∅c0 4325 (class class class)co 7424 ∈ cmpo 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-xp 5688 df-dm 5692 df-iota 6506 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 |
This theorem is referenced by: wwlksnon0 29788 |
Copyright terms: Public domain | W3C validator |