| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2mpo0 | Structured version Visualization version GIF version | ||
| Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
| Ref | Expression |
|---|---|
| 2mpo0.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
| 2mpo0.u | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
| Ref | Expression |
|---|---|
| 2mpo0 | ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 983 | . 2 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) ↔ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷))) | |
| 2 | 2mpo0.o | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | |
| 3 | 2 | mpondm0 7652 | . . . . 5 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) |
| 4 | 3 | oveqd 7427 | . . . 4 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) |
| 5 | 0ov 7447 | . . . 4 ⊢ (𝑆∅𝑇) = ∅ | |
| 6 | 4, 5 | eqtrdi 2787 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| 7 | notnotb 315 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ ¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
| 8 | 2mpo0.u | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) | |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
| 10 | 9 | oveqd 7427 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇)) |
| 11 | eqid 2736 | . . . . . . 7 ⊢ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) | |
| 12 | 11 | mpondm0 7652 | . . . . . 6 ⊢ (¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
| 13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
| 14 | 10, 13 | eqtrd 2771 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| 15 | 7, 14 | sylanbr 582 | . . 3 ⊢ ((¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| 16 | 6, 15 | jaoi3 1060 | . 2 ⊢ ((¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| 17 | 1, 16 | sylbi 217 | 1 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∅c0 4313 (class class class)co 7410 ∈ cmpo 7412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-iota 6489 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 |
| This theorem is referenced by: wwlksnon0 29841 |
| Copyright terms: Public domain | W3C validator |