![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2mpo0 | Structured version Visualization version GIF version |
Description: If the operation value of the operation value of two nested maps-to notation is not empty, all involved arguments belong to the corresponding base classes of the maps-to notations. (Contributed by AV, 21-May-2021.) |
Ref | Expression |
---|---|
2mpo0.o | ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) |
2mpo0.u | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
Ref | Expression |
---|---|
2mpo0 | ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 982 | . 2 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) ↔ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷))) | |
2 | 2mpo0.o | . . . . . 6 ⊢ 𝑂 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | |
3 | 2 | mpondm0 7690 | . . . . 5 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = ∅) |
4 | 3 | oveqd 7465 | . . . 4 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆∅𝑇)) |
5 | 0ov 7485 | . . . 4 ⊢ (𝑆∅𝑇) = ∅ | |
6 | 4, 5 | eqtrdi 2796 | . . 3 ⊢ (¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
7 | notnotb 315 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ↔ ¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | |
8 | 2mpo0.u | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) | |
9 | 8 | adantr 480 | . . . . . 6 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑋𝑂𝑌) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)) |
10 | 9 | oveqd 7465 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇)) |
11 | eqid 2740 | . . . . . . 7 ⊢ (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) = (𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹) | |
12 | 11 | mpondm0 7690 | . . . . . 6 ⊢ (¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
13 | 12 | adantl 481 | . . . . 5 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑠 ∈ 𝐶, 𝑡 ∈ 𝐷 ↦ 𝐹)𝑇) = ∅) |
14 | 10, 13 | eqtrd 2780 | . . . 4 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
15 | 7, 14 | sylanbr 581 | . . 3 ⊢ ((¬ ¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
16 | 6, 15 | jaoi3 1061 | . 2 ⊢ ((¬ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∨ ¬ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
17 | 1, 16 | sylbi 217 | 1 ⊢ (¬ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ (𝑆 ∈ 𝐶 ∧ 𝑇 ∈ 𝐷)) → (𝑆(𝑋𝑂𝑌)𝑇) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∅c0 4352 (class class class)co 7448 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: wwlksnon0 29887 |
Copyright terms: Public domain | W3C validator |