MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnd0 Structured version   Visualization version   GIF version

Theorem pfxnd0 14040
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6697). (Contributed by AV, 3-Dec-2022.)
Assertion
Ref Expression
pfxnd0 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)

Proof of Theorem pfxnd0
StepHypRef Expression
1 df-nel 3129 . . . . 5 (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊)))
21a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊))))
3 elfz2nn0 12988 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)))
43a1i 11 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
54notbid 319 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ∈ (0...(♯‘𝑊)) ↔ ¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
6 3ianor 1101 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
76a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
82, 5, 73bitrd 306 . . 3 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
9 3orrot 1086 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0))
10 3orass 1084 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)))
11 lencl 13873 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1211pm2.24d 154 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅))
1312com12 32 . . . . . . 7 (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
14 simpr 485 . . . . . . . . . . . 12 ((𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
1514con3i 157 . . . . . . . . . . 11 𝐿 ∈ ℕ0 → ¬ (𝑊 ∈ V ∧ 𝐿 ∈ ℕ0))
16 pfxnndmnd 14024 . . . . . . . . . . 11 (¬ (𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = ∅)
1715, 16syl 17 . . . . . . . . . 10 𝐿 ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅)
1817a1d 25 . . . . . . . . 9 𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
19 notnotb 316 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0)
2011nn0red 11945 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
21 nn0re 11895 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
22 ltnle 10709 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2320, 21, 22syl2an 595 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
24 pfxnd 14039 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
25243expia 1115 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 → (𝑊 prefix 𝐿) = ∅))
2623, 25sylbird 261 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅))
2726expcom 414 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅)))
2827com23 86 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2919, 28sylbir 236 . . . . . . . . . 10 (¬ ¬ 𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
3029imp 407 . . . . . . . . 9 ((¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3118, 30jaoi3 1054 . . . . . . . 8 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3231orcoms 870 . . . . . . 7 ((¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3313, 32jaoi 853 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3410, 33sylbi 218 . . . . 5 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
359, 34sylbi 218 . . . 4 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3635com12 32 . . 3 (𝑊 ∈ Word 𝑉 → ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
378, 36sylbid 241 . 2 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
3837imp 407 1 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 843  w3o 1080  w3a 1081   = wceq 1530  wcel 2107  wnel 3128  Vcvv 3500  c0 4295   class class class wbr 5063  cfv 6352  (class class class)co 7148  cr 10525  0cc0 10526   < clt 10664  cle 10665  0cn0 11886  ...cfz 12882  chash 13680  Word cword 13851   prefix cpfx 14022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-substr 13993  df-pfx 14023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator