MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnd0 Structured version   Visualization version   GIF version

Theorem pfxnd0 14653
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6893). (Contributed by AV, 3-Dec-2022.)
Assertion
Ref Expression
pfxnd0 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)

Proof of Theorem pfxnd0
StepHypRef Expression
1 df-nel 3030 . . . . 5 (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊)))
21a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊))))
3 elfz2nn0 13579 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)))
43a1i 11 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
54notbid 318 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ∈ (0...(♯‘𝑊)) ↔ ¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
6 3ianor 1106 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
76a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
82, 5, 73bitrd 305 . . 3 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
9 3orrot 1091 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0))
10 3orass 1089 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)))
11 lencl 14498 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1211pm2.24d 151 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅))
1312com12 32 . . . . . . 7 (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
14 simpr 484 . . . . . . . . . . 11 ((𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
15 pfxnndmnd 14637 . . . . . . . . . . 11 (¬ (𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = ∅)
1614, 15nsyl5 159 . . . . . . . . . 10 𝐿 ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅)
1716a1d 25 . . . . . . . . 9 𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
18 notnotb 315 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0)
1911nn0red 12504 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
20 nn0re 12451 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
21 ltnle 11253 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2219, 20, 21syl2an 596 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
23 pfxnd 14652 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
24233expia 1121 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 → (𝑊 prefix 𝐿) = ∅))
2522, 24sylbird 260 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅))
2625expcom 413 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅)))
2726com23 86 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2818, 27sylbir 235 . . . . . . . . . 10 (¬ ¬ 𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2928imp 406 . . . . . . . . 9 ((¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3017, 29jaoi3 1060 . . . . . . . 8 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3130orcoms 872 . . . . . . 7 ((¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3213, 31jaoi 857 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3310, 32sylbi 217 . . . . 5 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
349, 33sylbi 217 . . . 4 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3534com12 32 . . 3 (𝑊 ∈ Word 𝑉 → ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
368, 35sylbid 240 . 2 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
3736imp 406 1 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  Vcvv 3447  c0 4296   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   < clt 11208  cle 11209  0cn0 12442  ...cfz 13468  chash 14295  Word cword 14478   prefix cpfx 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-substr 14606  df-pfx 14636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator