MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnd0 Structured version   Visualization version   GIF version

Theorem pfxnd0 14711
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6916). (Contributed by AV, 3-Dec-2022.)
Assertion
Ref Expression
pfxnd0 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)

Proof of Theorem pfxnd0
StepHypRef Expression
1 df-nel 3038 . . . . 5 (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊)))
21a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊))))
3 elfz2nn0 13640 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)))
43a1i 11 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
54notbid 318 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ∈ (0...(♯‘𝑊)) ↔ ¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
6 3ianor 1106 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
76a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
82, 5, 73bitrd 305 . . 3 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
9 3orrot 1091 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0))
10 3orass 1089 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)))
11 lencl 14556 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1211pm2.24d 151 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅))
1312com12 32 . . . . . . 7 (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
14 simpr 484 . . . . . . . . . . 11 ((𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
15 pfxnndmnd 14695 . . . . . . . . . . 11 (¬ (𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = ∅)
1614, 15nsyl5 159 . . . . . . . . . 10 𝐿 ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅)
1716a1d 25 . . . . . . . . 9 𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
18 notnotb 315 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0)
1911nn0red 12568 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
20 nn0re 12515 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
21 ltnle 11319 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2219, 20, 21syl2an 596 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
23 pfxnd 14710 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
24233expia 1121 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 → (𝑊 prefix 𝐿) = ∅))
2522, 24sylbird 260 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅))
2625expcom 413 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅)))
2726com23 86 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2818, 27sylbir 235 . . . . . . . . . 10 (¬ ¬ 𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2928imp 406 . . . . . . . . 9 ((¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3017, 29jaoi3 1060 . . . . . . . 8 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3130orcoms 872 . . . . . . 7 ((¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3213, 31jaoi 857 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3310, 32sylbi 217 . . . . 5 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
349, 33sylbi 217 . . . 4 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3534com12 32 . . 3 (𝑊 ∈ Word 𝑉 → ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
368, 35sylbid 240 . 2 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
3736imp 406 1 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wnel 3037  Vcvv 3464  c0 4313   class class class wbr 5124  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134   < clt 11274  cle 11275  0cn0 12506  ...cfz 13529  chash 14353  Word cword 14536   prefix cpfx 14693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-substr 14664  df-pfx 14694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator