MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxnd0 Structured version   Visualization version   GIF version

Theorem pfxnd0 14723
Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6942). (Contributed by AV, 3-Dec-2022.)
Assertion
Ref Expression
pfxnd0 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)

Proof of Theorem pfxnd0
StepHypRef Expression
1 df-nel 3045 . . . . 5 (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊)))
21a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ ¬ 𝐿 ∈ (0...(♯‘𝑊))))
3 elfz2nn0 13655 . . . . . 6 (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)))
43a1i 11 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝐿 ∈ (0...(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
54notbid 318 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ∈ (0...(♯‘𝑊)) ↔ ¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊))))
6 3ianor 1106 . . . . 5 (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)))
76a1i 11 . . . 4 (𝑊 ∈ Word 𝑉 → (¬ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝐿 ≤ (♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
82, 5, 73bitrd 305 . . 3 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) ↔ (¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊))))
9 3orrot 1091 . . . . 5 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0))
10 3orass 1089 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) ↔ (¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)))
11 lencl 14568 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
1211pm2.24d 151 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅))
1312com12 32 . . . . . . 7 (¬ (♯‘𝑊) ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
14 simpr 484 . . . . . . . . . . 11 ((𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℕ0)
15 pfxnndmnd 14707 . . . . . . . . . . 11 (¬ (𝑊 ∈ V ∧ 𝐿 ∈ ℕ0) → (𝑊 prefix 𝐿) = ∅)
1614, 15nsyl5 159 . . . . . . . . . 10 𝐿 ∈ ℕ0 → (𝑊 prefix 𝐿) = ∅)
1716a1d 25 . . . . . . . . 9 𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
18 notnotb 315 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0)
1911nn0red 12586 . . . . . . . . . . . . . . 15 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
20 nn0re 12533 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
21 ltnle 11338 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
2219, 20, 21syl2an 596 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 ↔ ¬ 𝐿 ≤ (♯‘𝑊)))
23 pfxnd 14722 . . . . . . . . . . . . . . 15 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0 ∧ (♯‘𝑊) < 𝐿) → (𝑊 prefix 𝐿) = ∅)
24233expia 1120 . . . . . . . . . . . . . 14 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → ((♯‘𝑊) < 𝐿 → (𝑊 prefix 𝐿) = ∅))
2522, 24sylbird 260 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℕ0) → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅))
2625expcom 413 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → (𝑊 ∈ Word 𝑉 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 prefix 𝐿) = ∅)))
2726com23 86 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2818, 27sylbir 235 . . . . . . . . . 10 (¬ ¬ 𝐿 ∈ ℕ0 → (¬ 𝐿 ≤ (♯‘𝑊) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅)))
2928imp 406 . . . . . . . . 9 ((¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3017, 29jaoi3 1060 . . . . . . . 8 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3130orcoms 872 . . . . . . 7 ((¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3213, 31jaoi 857 . . . . . 6 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ (¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3310, 32sylbi 217 . . . . 5 ((¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊) ∨ ¬ 𝐿 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
349, 33sylbi 217 . . . 4 ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝐿) = ∅))
3534com12 32 . . 3 (𝑊 ∈ Word 𝑉 → ((¬ 𝐿 ∈ ℕ0 ∨ ¬ (♯‘𝑊) ∈ ℕ0 ∨ ¬ 𝐿 ≤ (♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
368, 35sylbid 240 . 2 (𝑊 ∈ Word 𝑉 → (𝐿 ∉ (0...(♯‘𝑊)) → (𝑊 prefix 𝐿) = ∅))
3736imp 406 1 ((𝑊 ∈ Word 𝑉𝐿 ∉ (0...(♯‘𝑊))) → (𝑊 prefix 𝐿) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wnel 3044  Vcvv 3478  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   < clt 11293  cle 11294  0cn0 12524  ...cfz 13544  chash 14366  Word cword 14549   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-substr 14676  df-pfx 14706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator