MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bropfvvvv Structured version   Visualization version   GIF version

Theorem bropfvvvv 7538
Description: If a binary relation holds for the result of an operation which is a function value, the involved classes are sets. (Contributed by AV, 31-Dec-2020.) (Revised by AV, 16-Jan-2021.)
Hypotheses
Ref Expression
bropfvvvv.o 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
bropfvvvv.oo ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
bropfvvvv.s (𝑎 = 𝐴𝑉 = 𝑆)
bropfvvvv.t (𝑎 = 𝐴𝑊 = 𝑇)
bropfvvvv.p (𝑎 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bropfvvvv ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
Distinct variable groups:   𝑈,𝑎   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒   𝑆,𝑎,𝑏,𝑐   𝑇,𝑎,𝑏,𝑐   𝜓,𝑎
Allowed substitution hints:   𝜑(𝑒,𝑎,𝑏,𝑐,𝑑)   𝜓(𝑒,𝑏,𝑐,𝑑)   𝜃(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐵(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐶(𝑒,𝑎,𝑏,𝑐,𝑑)   𝐷(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑆(𝑒,𝑑)   𝑇(𝑒,𝑑)   𝑈(𝑒,𝑏,𝑐,𝑑)   𝐸(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑂(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑉(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑊(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑒,𝑎,𝑏,𝑐,𝑑)   𝑌(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem bropfvvvv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 brovpreldm 7535 . 2 (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → ⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴))
2 bropfvvvv.s . . . . . . . . . 10 (𝑎 = 𝐴𝑉 = 𝑆)
3 bropfvvvv.t . . . . . . . . . 10 (𝑎 = 𝐴𝑊 = 𝑇)
4 bropfvvvv.p . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝜑𝜓))
54opabbidv 4952 . . . . . . . . . 10 (𝑎 = 𝐴 → {⟨𝑑, 𝑒⟩ ∣ 𝜑} = {⟨𝑑, 𝑒⟩ ∣ 𝜓})
62, 3, 5mpt2eq123dv 6994 . . . . . . . . 9 (𝑎 = 𝐴 → (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}) = (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
7 bropfvvvv.o . . . . . . . . 9 𝑂 = (𝑎𝑈 ↦ (𝑏𝑉, 𝑐𝑊 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜑}))
86, 7fvmptg 6540 . . . . . . . 8 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (𝑂𝐴) = (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
98dmeqd 5571 . . . . . . 7 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → dom (𝑂𝐴) = dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}))
109eleq2d 2845 . . . . . 6 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓})))
11 dmoprabss 7019 . . . . . . . . 9 dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} ⊆ (𝑆 × 𝑇)
1211sseli 3817 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} → ⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇))
13 bropfvvvv.oo . . . . . . . . . 10 ((𝐴𝑈𝐵𝑆𝐶𝑇) → (𝐵(𝑂𝐴)𝐶) = {⟨𝑑, 𝑒⟩ ∣ 𝜃})
147, 13bropfvvvvlem 7537 . . . . . . . . 9 ((⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) ∧ 𝐷(𝐵(𝑂𝐴)𝐶)𝐸) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))
1514ex 403 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ (𝑆 × 𝑇) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
1612, 15syl 17 . . . . . . 7 (⟨𝐵, 𝐶⟩ ∈ dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})} → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
17 df-mpt2 6927 . . . . . . . 8 (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) = {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})}
1817dmeqi 5570 . . . . . . 7 dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) = dom {⟨⟨𝑏, 𝑐⟩, 𝑧⟩ ∣ ((𝑏𝑆𝑐𝑇) ∧ 𝑧 = {⟨𝑑, 𝑒⟩ ∣ 𝜓})}
1916, 18eleq2s 2877 . . . . . 6 (⟨𝐵, 𝐶⟩ ∈ dom (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
2010, 19syl6bi 245 . . . . 5 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
2120com23 86 . . . 4 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
2221a1d 25 . . 3 ((𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
23 ianor 967 . . . . 5 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) ↔ (¬ 𝐴𝑈 ∨ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V))
247fvmptndm 6570 . . . . . . . . . . 11 𝐴𝑈 → (𝑂𝐴) = ∅)
2524dmeqd 5571 . . . . . . . . . 10 𝐴𝑈 → dom (𝑂𝐴) = dom ∅)
2625eleq2d 2845 . . . . . . . . 9 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ dom ∅))
27 dm0 5584 . . . . . . . . . 10 dom ∅ = ∅
2827eleq2i 2851 . . . . . . . . 9 (⟨𝐵, 𝐶⟩ ∈ dom ∅ ↔ ⟨𝐵, 𝐶⟩ ∈ ∅)
2926, 28syl6bb 279 . . . . . . . 8 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ∅))
30 noel 4146 . . . . . . . . 9 ¬ ⟨𝐵, 𝐶⟩ ∈ ∅
3130pm2.21i 117 . . . . . . . 8 (⟨𝐵, 𝐶⟩ ∈ ∅ → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
3229, 31syl6bi 245 . . . . . . 7 𝐴𝑈 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
3332a1d 25 . . . . . 6 𝐴𝑈 → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
34 notnotb 307 . . . . . . . 8 (𝐴𝑈 ↔ ¬ ¬ 𝐴𝑈)
35 elex 3414 . . . . . . . . . . . . . 14 (𝑆𝑋𝑆 ∈ V)
36 elex 3414 . . . . . . . . . . . . . 14 (𝑇𝑌𝑇 ∈ V)
3735, 36anim12i 606 . . . . . . . . . . . . 13 ((𝑆𝑋𝑇𝑌) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
3837adantl 475 . . . . . . . . . . . 12 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (𝑆 ∈ V ∧ 𝑇 ∈ V))
39 mpt2exga 7526 . . . . . . . . . . . 12 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V)
4038, 39syl 17 . . . . . . . . . . 11 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V)
4140pm2.24d 149 . . . . . . . . . 10 ((𝐴𝑈 ∧ (𝑆𝑋𝑇𝑌)) → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4241ex 403 . . . . . . . . 9 (𝐴𝑈 → ((𝑆𝑋𝑇𝑌) → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4342com23 86 . . . . . . . 8 (𝐴𝑈 → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4434, 43sylbir 227 . . . . . . 7 (¬ ¬ 𝐴𝑈 → (¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))))
4544imp 397 . . . . . 6 ((¬ ¬ 𝐴𝑈 ∧ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4633, 45jaoi3 1044 . . . . 5 ((¬ 𝐴𝑈 ∨ ¬ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4723, 46sylbi 209 . . . 4 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4847com34 91 . . 3 (¬ (𝐴𝑈 ∧ (𝑏𝑆, 𝑐𝑇 ↦ {⟨𝑑, 𝑒⟩ ∣ 𝜓}) ∈ V) → ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))))
4922, 48pm2.61i 177 . 2 ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (⟨𝐵, 𝐶⟩ ∈ dom (𝑂𝐴) → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V)))))
501, 49mpdi 45 1 ((𝑆𝑋𝑇𝑌) → (𝐷(𝐵(𝑂𝐴)𝐶)𝐸 → (𝐴𝑈 ∧ (𝐵𝑆𝐶𝑇) ∧ (𝐷 ∈ V ∧ 𝐸 ∈ V))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  Vcvv 3398  c0 4141  cop 4404   class class class wbr 4886  {copab 4948  cmpt 4965   × cxp 5353  dom cdm 5355  cfv 6135  (class class class)co 6922  {coprab 6923  cmpt2 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446
This theorem is referenced by:  wlkonprop  27005  wksonproplem  27057
  Copyright terms: Public domain W3C validator