![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limiun | Structured version Visualization version GIF version |
Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6456. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
limiun | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 6456 | . 2 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | uniiun 5081 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | 1, 2 | eqtrdi 2796 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∪ cuni 4931 ∪ ciun 5015 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rex 3077 df-uni 4932 df-iun 5017 df-lim 6400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |