Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limiun Structured version   Visualization version   GIF version

Theorem limiun 43323
Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6368. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limiun (Lim 𝐴𝐴 = 𝑥𝐴 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limiun
StepHypRef Expression
1 limuni 6368 . 2 (Lim 𝐴𝐴 = 𝐴)
2 uniiun 5005 . 2 𝐴 = 𝑥𝐴 𝑥
31, 2eqtrdi 2782 1 (Lim 𝐴𝐴 = 𝑥𝐴 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541   cuni 4856   ciun 4939  Lim wlim 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-rex 3057  df-uni 4857  df-iun 4941  df-lim 6311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator