![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limiun | Structured version Visualization version GIF version |
Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6446. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
limiun | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 6446 | . 2 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | uniiun 5062 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
3 | 1, 2 | eqtrdi 2790 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∪ cuni 4911 ∪ ciun 4995 Lim wlim 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-rex 3068 df-uni 4912 df-iun 4997 df-lim 6390 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |