| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limiun | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6368. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| limiun | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6368 | . 2 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | uniiun 5005 | . 2 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 | |
| 3 | 1, 2 | eqtrdi 2782 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cuni 4856 ∪ ciun 4939 Lim wlim 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rex 3057 df-uni 4857 df-iun 4941 df-lim 6311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |