Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limiun Structured version   Visualization version   GIF version

Theorem limiun 42853
Description: A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6432. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limiun (Lim 𝐴𝐴 = 𝑥𝐴 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem limiun
StepHypRef Expression
1 limuni 6432 . 2 (Lim 𝐴𝐴 = 𝐴)
2 uniiun 5062 . 2 𝐴 = 𝑥𝐴 𝑥
31, 2eqtrdi 2781 1 (Lim 𝐴𝐴 = 𝑥𝐴 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533   cuni 4909   ciun 4997  Lim wlim 6372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-rex 3060  df-uni 4910  df-iun 4999  df-lim 6376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator