![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4933 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cab 2717 ∃wrex 3076 ∪ cuni 4931 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-rex 3077 df-uni 4932 df-iun 5017 |
This theorem is referenced by: iununi 5122 iunpwss 5130 truni 5299 reluni 5842 rnuni 6180 imauni 7283 iunpw 7806 oa0r 8594 om1r 8599 oeworde 8649 unifi 9412 infssuni 9414 cfslb2n 10337 ituniiun 10491 unidom 10612 unictb 10644 gruuni 10869 gruun 10875 hashuni 15874 tgidm 23008 unicld 23075 clsval2 23079 mretopd 23121 tgrest 23188 cmpsublem 23428 cmpsub 23429 tgcmp 23430 hauscmplem 23435 cmpfi 23437 unconn 23458 conncompconn 23461 comppfsc 23561 kgentopon 23567 txbasval 23635 txtube 23669 txcmplem1 23670 txcmplem2 23671 xkococnlem 23688 alexsublem 24073 alexsubALT 24080 opnmblALT 25657 limcun 25950 uniin1 32574 uniin2 32575 disjuniel 32619 hashunif 32813 dmvlsiga 34093 measinblem 34184 volmeas 34195 carsggect 34283 omsmeas 34288 cvmscld 35241 istotbnd3 37731 sstotbnd 37735 heiborlem3 37773 heibor 37781 limiun 43244 fiunicl 44969 founiiun 45086 founiiun0 45097 psmeasurelem 46391 |
Copyright terms: Public domain | W3C validator |