Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4841 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 4926 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∃wrex 3065 ∪ cuni 4839 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-rex 3070 df-uni 4840 df-iun 4926 |
This theorem is referenced by: iununi 5028 iunpwss 5036 truni 5205 reluni 5728 rnuni 6052 imauni 7119 iunpw 7621 oa0r 8368 om1r 8374 oeworde 8424 unifi 9108 infssuni 9110 cfslb2n 10024 ituniiun 10178 unidom 10299 unictb 10331 gruuni 10556 gruun 10562 hashuni 15538 tgidm 22130 unicld 22197 clsval2 22201 mretopd 22243 tgrest 22310 cmpsublem 22550 cmpsub 22551 tgcmp 22552 hauscmplem 22557 cmpfi 22559 unconn 22580 conncompconn 22583 comppfsc 22683 kgentopon 22689 txbasval 22757 txtube 22791 txcmplem1 22792 txcmplem2 22793 xkococnlem 22810 alexsublem 23195 alexsubALT 23202 opnmblALT 24767 limcun 25059 uniin1 30891 uniin2 30892 disjuniel 30936 hashunif 31126 dmvlsiga 32097 measinblem 32188 volmeas 32199 carsggect 32285 omsmeas 32290 cvmscld 33235 istotbnd3 35929 sstotbnd 35933 heiborlem3 35971 heibor 35979 fiunicl 42615 founiiun 42715 founiiun0 42728 psmeasurelem 44008 |
Copyright terms: Public domain | W3C validator |