| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4863 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4946 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∃wrex 3053 ∪ cuni 4861 ∪ ciun 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rex 3054 df-uni 4862 df-iun 4946 |
| This theorem is referenced by: iununi 5051 iunpwss 5059 truni 5217 reluni 5765 rnuni 6101 imauni 7186 iunpw 7711 oa0r 8463 om1r 8468 oeworde 8518 unifi 9253 infssuni 9255 cfslb2n 10181 ituniiun 10335 unidom 10456 unictb 10488 gruuni 10713 gruun 10719 hashuni 15751 tgidm 22883 unicld 22949 clsval2 22953 mretopd 22995 tgrest 23062 cmpsublem 23302 cmpsub 23303 tgcmp 23304 hauscmplem 23309 cmpfi 23311 unconn 23332 conncompconn 23335 comppfsc 23435 kgentopon 23441 txbasval 23509 txtube 23543 txcmplem1 23544 txcmplem2 23545 xkococnlem 23562 alexsublem 23947 alexsubALT 23954 opnmblALT 25520 limcun 25812 uniin1 32513 uniin2 32514 disjuniel 32559 hashunif 32764 dmvlsiga 34095 measinblem 34186 volmeas 34197 carsggect 34285 omsmeas 34290 tz9.1regs 35066 cvmscld 35245 istotbnd3 37750 sstotbnd 37754 heiborlem3 37792 heibor 37800 limiun 43255 fiunicl 45045 founiiun 45157 founiiun0 45168 psmeasurelem 46452 |
| Copyright terms: Public domain | W3C validator |