| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4885 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4969 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2761 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2713 ∃wrex 3060 ∪ cuni 4883 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-rex 3061 df-uni 4884 df-iun 4969 |
| This theorem is referenced by: iununi 5075 iunpwss 5083 truni 5245 reluni 5797 rnuni 6137 imauni 7238 iunpw 7765 oa0r 8550 om1r 8555 oeworde 8605 unifi 9356 infssuni 9358 cfslb2n 10282 ituniiun 10436 unidom 10557 unictb 10589 gruuni 10814 gruun 10820 hashuni 15842 tgidm 22918 unicld 22984 clsval2 22988 mretopd 23030 tgrest 23097 cmpsublem 23337 cmpsub 23338 tgcmp 23339 hauscmplem 23344 cmpfi 23346 unconn 23367 conncompconn 23370 comppfsc 23470 kgentopon 23476 txbasval 23544 txtube 23578 txcmplem1 23579 txcmplem2 23580 xkococnlem 23597 alexsublem 23982 alexsubALT 23989 opnmblALT 25556 limcun 25848 uniin1 32532 uniin2 32533 disjuniel 32578 hashunif 32785 dmvlsiga 34160 measinblem 34251 volmeas 34262 carsggect 34350 omsmeas 34355 cvmscld 35295 istotbnd3 37795 sstotbnd 37799 heiborlem3 37837 heibor 37845 limiun 43306 fiunicl 45091 founiiun 45203 founiiun0 45214 psmeasurelem 46499 |
| Copyright terms: Public domain | W3C validator |