| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4889 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4973 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2760 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 {cab 2712 ∃wrex 3059 ∪ cuni 4887 ∪ ciun 4971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-rex 3060 df-uni 4888 df-iun 4973 |
| This theorem is referenced by: iununi 5079 iunpwss 5087 truni 5255 reluni 5808 rnuni 6148 imauni 7248 iunpw 7773 oa0r 8558 om1r 8563 oeworde 8613 unifi 9366 infssuni 9368 cfslb2n 10290 ituniiun 10444 unidom 10565 unictb 10597 gruuni 10822 gruun 10828 hashuni 15845 tgidm 22935 unicld 23001 clsval2 23005 mretopd 23047 tgrest 23114 cmpsublem 23354 cmpsub 23355 tgcmp 23356 hauscmplem 23361 cmpfi 23363 unconn 23384 conncompconn 23387 comppfsc 23487 kgentopon 23493 txbasval 23561 txtube 23595 txcmplem1 23596 txcmplem2 23597 xkococnlem 23614 alexsublem 23999 alexsubALT 24006 opnmblALT 25575 limcun 25867 uniin1 32500 uniin2 32501 disjuniel 32546 hashunif 32754 dmvlsiga 34105 measinblem 34196 volmeas 34207 carsggect 34295 omsmeas 34300 cvmscld 35253 istotbnd3 37753 sstotbnd 37757 heiborlem3 37795 heibor 37803 limiun 43272 fiunicl 45044 founiiun 45156 founiiun0 45167 psmeasurelem 46457 |
| Copyright terms: Public domain | W3C validator |