| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4876 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4960 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∃wrex 3054 ∪ cuni 4874 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rex 3055 df-uni 4875 df-iun 4960 |
| This theorem is referenced by: iununi 5066 iunpwss 5074 truni 5233 reluni 5784 rnuni 6124 imauni 7223 iunpw 7750 oa0r 8505 om1r 8510 oeworde 8560 unifi 9302 infssuni 9304 cfslb2n 10228 ituniiun 10382 unidom 10503 unictb 10535 gruuni 10760 gruun 10766 hashuni 15799 tgidm 22874 unicld 22940 clsval2 22944 mretopd 22986 tgrest 23053 cmpsublem 23293 cmpsub 23294 tgcmp 23295 hauscmplem 23300 cmpfi 23302 unconn 23323 conncompconn 23326 comppfsc 23426 kgentopon 23432 txbasval 23500 txtube 23534 txcmplem1 23535 txcmplem2 23536 xkococnlem 23553 alexsublem 23938 alexsubALT 23945 opnmblALT 25511 limcun 25803 uniin1 32487 uniin2 32488 disjuniel 32533 hashunif 32738 dmvlsiga 34126 measinblem 34217 volmeas 34228 carsggect 34316 omsmeas 34321 cvmscld 35267 istotbnd3 37772 sstotbnd 37776 heiborlem3 37814 heibor 37822 limiun 43278 fiunicl 45068 founiiun 45180 founiiun0 45191 psmeasurelem 46475 |
| Copyright terms: Public domain | W3C validator |