| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4860 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4943 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2711 ∃wrex 3057 ∪ cuni 4858 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-rex 3058 df-uni 4859 df-iun 4943 |
| This theorem is referenced by: iununi 5049 iunpwss 5057 truni 5215 reluni 5762 rnuni 6100 imauni 7186 iunpw 7710 oa0r 8459 om1r 8464 oeworde 8514 unifi 9235 infssuni 9237 cfslb2n 10166 ituniiun 10320 unidom 10441 unictb 10473 gruuni 10698 gruun 10704 hashuni 15735 tgidm 22896 unicld 22962 clsval2 22966 mretopd 23008 tgrest 23075 cmpsublem 23315 cmpsub 23316 tgcmp 23317 hauscmplem 23322 cmpfi 23324 unconn 23345 conncompconn 23348 comppfsc 23448 kgentopon 23454 txbasval 23522 txtube 23556 txcmplem1 23557 txcmplem2 23558 xkococnlem 23575 alexsublem 23960 alexsubALT 23967 opnmblALT 25532 limcun 25824 uniin1 32533 uniin2 32534 disjuniel 32579 hashunif 32793 dmvlsiga 34163 measinblem 34254 volmeas 34265 carsggect 34352 omsmeas 34357 tz9.1regs 35151 cvmscld 35338 istotbnd3 37831 sstotbnd 37835 heiborlem3 37873 heibor 37881 limiun 43399 fiunicl 45188 founiiun 45300 founiiun0 45311 psmeasurelem 46592 |
| Copyright terms: Public domain | W3C validator |