| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4873 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4957 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2755 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2707 ∃wrex 3053 ∪ cuni 4871 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-rex 3054 df-uni 4872 df-iun 4957 |
| This theorem is referenced by: iununi 5063 iunpwss 5071 truni 5230 reluni 5781 rnuni 6121 imauni 7220 iunpw 7747 oa0r 8502 om1r 8507 oeworde 8557 unifi 9295 infssuni 9297 cfslb2n 10221 ituniiun 10375 unidom 10496 unictb 10528 gruuni 10753 gruun 10759 hashuni 15792 tgidm 22867 unicld 22933 clsval2 22937 mretopd 22979 tgrest 23046 cmpsublem 23286 cmpsub 23287 tgcmp 23288 hauscmplem 23293 cmpfi 23295 unconn 23316 conncompconn 23319 comppfsc 23419 kgentopon 23425 txbasval 23493 txtube 23527 txcmplem1 23528 txcmplem2 23529 xkococnlem 23546 alexsublem 23931 alexsubALT 23938 opnmblALT 25504 limcun 25796 uniin1 32480 uniin2 32481 disjuniel 32526 hashunif 32731 dmvlsiga 34119 measinblem 34210 volmeas 34221 carsggect 34309 omsmeas 34314 cvmscld 35260 istotbnd3 37765 sstotbnd 37769 heiborlem3 37807 heibor 37815 limiun 43271 fiunicl 45061 founiiun 45173 founiiun0 45184 psmeasurelem 46468 |
| Copyright terms: Public domain | W3C validator |