![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4913 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 4997 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2765 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 {cab 2711 ∃wrex 3067 ∪ cuni 4911 ∪ ciun 4995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-rex 3068 df-uni 4912 df-iun 4997 |
This theorem is referenced by: iununi 5103 iunpwss 5111 truni 5280 reluni 5830 rnuni 6170 imauni 7265 iunpw 7789 oa0r 8574 om1r 8579 oeworde 8629 unifi 9381 infssuni 9383 cfslb2n 10305 ituniiun 10459 unidom 10580 unictb 10612 gruuni 10837 gruun 10843 hashuni 15858 tgidm 23002 unicld 23069 clsval2 23073 mretopd 23115 tgrest 23182 cmpsublem 23422 cmpsub 23423 tgcmp 23424 hauscmplem 23429 cmpfi 23431 unconn 23452 conncompconn 23455 comppfsc 23555 kgentopon 23561 txbasval 23629 txtube 23663 txcmplem1 23664 txcmplem2 23665 xkococnlem 23682 alexsublem 24067 alexsubALT 24074 opnmblALT 25651 limcun 25944 uniin1 32571 uniin2 32572 disjuniel 32616 hashunif 32815 dmvlsiga 34109 measinblem 34200 volmeas 34211 carsggect 34299 omsmeas 34304 cvmscld 35257 istotbnd3 37757 sstotbnd 37761 heiborlem3 37799 heibor 37807 limiun 43271 fiunicl 45006 founiiun 45121 founiiun0 45132 psmeasurelem 46425 |
Copyright terms: Public domain | W3C validator |