| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version | ||
| Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 4861 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iun 4943 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ∃wrex 3056 ∪ cuni 4859 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-rex 3057 df-uni 4860 df-iun 4943 |
| This theorem is referenced by: iununi 5047 iunpwss 5055 truni 5213 reluni 5758 rnuni 6095 imauni 7180 iunpw 7704 oa0r 8453 om1r 8458 oeworde 8508 unifi 9228 infssuni 9230 cfslb2n 10156 ituniiun 10310 unidom 10431 unictb 10463 gruuni 10688 gruun 10694 hashuni 15730 tgidm 22893 unicld 22959 clsval2 22963 mretopd 23005 tgrest 23072 cmpsublem 23312 cmpsub 23313 tgcmp 23314 hauscmplem 23319 cmpfi 23321 unconn 23342 conncompconn 23345 comppfsc 23445 kgentopon 23451 txbasval 23519 txtube 23553 txcmplem1 23554 txcmplem2 23555 xkococnlem 23572 alexsublem 23957 alexsubALT 23964 opnmblALT 25529 limcun 25821 uniin1 32526 uniin2 32527 disjuniel 32572 hashunif 32783 dmvlsiga 34137 measinblem 34228 volmeas 34239 carsggect 34326 omsmeas 34331 tz9.1regs 35118 cvmscld 35305 istotbnd3 37810 sstotbnd 37814 heiborlem3 37852 heibor 37860 limiun 43314 fiunicl 45103 founiiun 45215 founiiun0 45226 psmeasurelem 46507 |
| Copyright terms: Public domain | W3C validator |