Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4852 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 4939 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2768 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {cab 2714 ∃wrex 3071 ∪ cuni 4850 ∪ ciun 4937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-rex 3072 df-uni 4851 df-iun 4939 |
This theorem is referenced by: iununi 5041 iunpwss 5049 truni 5220 reluni 5747 rnuni 6074 imauni 7158 iunpw 7661 oa0r 8416 om1r 8422 oeworde 8472 unifi 9178 infssuni 9180 cfslb2n 10097 ituniiun 10251 unidom 10372 unictb 10404 gruuni 10629 gruun 10635 hashuni 15610 tgidm 22202 unicld 22269 clsval2 22273 mretopd 22315 tgrest 22382 cmpsublem 22622 cmpsub 22623 tgcmp 22624 hauscmplem 22629 cmpfi 22631 unconn 22652 conncompconn 22655 comppfsc 22755 kgentopon 22761 txbasval 22829 txtube 22863 txcmplem1 22864 txcmplem2 22865 xkococnlem 22882 alexsublem 23267 alexsubALT 23274 opnmblALT 24839 limcun 25131 uniin1 30999 uniin2 31000 disjuniel 31044 hashunif 31234 dmvlsiga 32203 measinblem 32294 volmeas 32305 carsggect 32391 omsmeas 32396 cvmscld 33340 istotbnd3 35985 sstotbnd 35989 heiborlem3 36027 heibor 36035 fiunicl 42836 founiiun 42943 founiiun0 42956 psmeasurelem 44246 |
Copyright terms: Public domain | W3C validator |