Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniiun | Structured version Visualization version GIF version |
Description: Class union in terms of indexed union. Definition in [Stoll] p. 43. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
uniiun | ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 4838 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iun 4923 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {cab 2715 ∃wrex 3064 ∪ cuni 4836 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-rex 3069 df-uni 4837 df-iun 4923 |
This theorem is referenced by: iununi 5024 iunpwss 5032 truni 5201 reluni 5717 rnuni 6041 imauni 7101 iunpw 7599 oa0r 8330 om1r 8336 oeworde 8386 unifi 9038 infssuni 9040 cfslb2n 9955 ituniiun 10109 unidom 10230 unictb 10262 gruuni 10487 gruun 10493 hashuni 15466 tgidm 22038 unicld 22105 clsval2 22109 mretopd 22151 tgrest 22218 cmpsublem 22458 cmpsub 22459 tgcmp 22460 hauscmplem 22465 cmpfi 22467 unconn 22488 conncompconn 22491 comppfsc 22591 kgentopon 22597 txbasval 22665 txtube 22699 txcmplem1 22700 txcmplem2 22701 xkococnlem 22718 alexsublem 23103 alexsubALT 23110 opnmblALT 24672 limcun 24964 uniin1 30792 uniin2 30793 disjuniel 30837 hashunif 31028 dmvlsiga 31997 measinblem 32088 volmeas 32099 carsggect 32185 omsmeas 32190 cvmscld 33135 istotbnd3 35856 sstotbnd 35860 heiborlem3 35898 heibor 35906 fiunicl 42504 founiiun 42604 founiiun0 42617 psmeasurelem 43898 |
Copyright terms: Public domain | W3C validator |