| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limexissup | Structured version Visualization version GIF version | ||
| Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| limexissup | ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6402 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = ∪ 𝐴) |
| 3 | limord 6401 | . . . 4 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 4 | ordsson 7766 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
| 6 | onsupuni 43190 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) |
| 8 | 2, 7 | eqtr4d 2768 | 1 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ∪ cuni 4879 E cep 5545 Ord word 6339 Oncon0 6340 Lim wlim 6341 supcsup 9409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-ord 6343 df-on 6344 df-lim 6345 df-iota 6472 df-riota 7351 df-sup 9411 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |