Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limexissup Structured version   Visualization version   GIF version

Theorem limexissup 43242
Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limexissup ((Lim 𝐴𝐴𝑉) → 𝐴 = sup(𝐴, On, E ))

Proof of Theorem limexissup
StepHypRef Expression
1 limuni 6402 . . 3 (Lim 𝐴𝐴 = 𝐴)
21adantr 480 . 2 ((Lim 𝐴𝐴𝑉) → 𝐴 = 𝐴)
3 limord 6401 . . . 4 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7766 . . . 4 (Ord 𝐴𝐴 ⊆ On)
53, 4syl 17 . . 3 (Lim 𝐴𝐴 ⊆ On)
6 onsupuni 43190 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
75, 6sylan 580 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
82, 7eqtr4d 2768 1 ((Lim 𝐴𝐴𝑉) → 𝐴 = sup(𝐴, On, E ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3922   cuni 4879   E cep 5545  Ord word 6339  Oncon0 6340  Lim wlim 6341  supcsup 9409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-tr 5223  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-ord 6343  df-on 6344  df-lim 6345  df-iota 6472  df-riota 7351  df-sup 9411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator