![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limexissup | Structured version Visualization version GIF version |
Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
limexissup | ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 6425 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | 1 | adantr 480 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = ∪ 𝐴) |
3 | limord 6424 | . . . 4 ⊢ (Lim 𝐴 → Ord 𝐴) | |
4 | ordsson 7774 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
6 | onsupuni 42444 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | |
7 | 5, 6 | sylan 579 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) |
8 | 2, 7 | eqtr4d 2774 | 1 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ∪ cuni 4908 E cep 5579 Ord word 6363 Oncon0 6364 Lim wlim 6365 supcsup 9441 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-iota 6495 df-riota 7368 df-sup 9443 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |