Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limexissup Structured version   Visualization version   GIF version

Theorem limexissup 42497
Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limexissup ((Lim 𝐴𝐴𝑉) → 𝐴 = sup(𝐴, On, E ))

Proof of Theorem limexissup
StepHypRef Expression
1 limuni 6425 . . 3 (Lim 𝐴𝐴 = 𝐴)
21adantr 480 . 2 ((Lim 𝐴𝐴𝑉) → 𝐴 = 𝐴)
3 limord 6424 . . . 4 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7774 . . . 4 (Ord 𝐴𝐴 ⊆ On)
53, 4syl 17 . . 3 (Lim 𝐴𝐴 ⊆ On)
6 onsupuni 42444 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
75, 6sylan 579 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
82, 7eqtr4d 2774 1 ((Lim 𝐴𝐴𝑉) → 𝐴 = sup(𝐴, On, E ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wss 3948   cuni 4908   E cep 5579  Ord word 6363  Oncon0 6364  Lim wlim 6365  supcsup 9441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-lim 6369  df-iota 6495  df-riota 7368  df-sup 9443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator