| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limexissup | Structured version Visualization version GIF version | ||
| Description: An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| limexissup | ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6426 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = ∪ 𝐴) |
| 3 | limord 6425 | . . . 4 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 4 | ordsson 7786 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
| 6 | onsupuni 43186 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) |
| 8 | 2, 7 | eqtr4d 2772 | 1 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ∪ cuni 4889 E cep 5565 Ord word 6364 Oncon0 6365 Lim wlim 6366 supcsup 9463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 df-lim 6370 df-iota 6495 df-riota 7371 df-sup 9465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |