Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limexissupab Structured version   Visualization version   GIF version

Theorem limexissupab 43272
Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limexissupab ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem limexissupab
StepHypRef Expression
1 limuni 6394 . . 3 (Lim 𝐴𝐴 = 𝐴)
21adantr 480 . 2 ((Lim 𝐴𝐴𝑉) → 𝐴 = 𝐴)
3 limord 6393 . . . 4 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7759 . . . 4 (Ord 𝐴𝐴 ⊆ On)
53, 4syl 17 . . 3 (Lim 𝐴𝐴 ⊆ On)
6 onsupuni 43218 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
75, 6sylan 580 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
8 abid1 2864 . . 3 𝐴 = {𝑥𝑥𝐴}
9 supeq1 9396 . . 3 (𝐴 = {𝑥𝑥𝐴} → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
108, 9mp1i 13 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
112, 7, 103eqtr2d 2770 1 ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wss 3914   cuni 4871   E cep 5537  Ord word 6331  Oncon0 6332  Lim wlim 6333  supcsup 9391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-iota 6464  df-riota 7344  df-sup 9393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator