Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limexissupab Structured version   Visualization version   GIF version

Theorem limexissupab 42522
Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limexissupab ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem limexissupab
StepHypRef Expression
1 limuni 6415 . . 3 (Lim 𝐴𝐴 = 𝐴)
21adantr 480 . 2 ((Lim 𝐴𝐴𝑉) → 𝐴 = 𝐴)
3 limord 6414 . . . 4 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7763 . . . 4 (Ord 𝐴𝐴 ⊆ On)
53, 4syl 17 . . 3 (Lim 𝐴𝐴 ⊆ On)
6 onsupuni 42467 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
75, 6sylan 579 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
8 abid1 2862 . . 3 𝐴 = {𝑥𝑥𝐴}
9 supeq1 9436 . . 3 (𝐴 = {𝑥𝑥𝐴} → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
108, 9mp1i 13 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
112, 7, 103eqtr2d 2770 1 ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  wss 3940   cuni 4899   E cep 5569  Ord word 6353  Oncon0 6354  Lim wlim 6355  supcsup 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357  df-on 6358  df-lim 6359  df-iota 6485  df-riota 7357  df-sup 9433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator