![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limexissupab | Structured version Visualization version GIF version |
Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
Ref | Expression |
---|---|
limexissupab | ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 6456 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | 1 | adantr 480 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = ∪ 𝐴) |
3 | limord 6455 | . . . 4 ⊢ (Lim 𝐴 → Ord 𝐴) | |
4 | ordsson 7818 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
6 | onsupuni 43190 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | |
7 | 5, 6 | sylan 579 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) |
8 | abid1 2881 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
9 | supeq1 9514 | . . 3 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} → sup(𝐴, On, E ) = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) | |
10 | 8, 9 | mp1i 13 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
11 | 2, 7, 10 | 3eqtr2d 2786 | 1 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ⊆ wss 3976 ∪ cuni 4931 E cep 5598 Ord word 6394 Oncon0 6395 Lim wlim 6396 supcsup 9509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-iota 6525 df-riota 7404 df-sup 9511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |