Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limexissupab Structured version   Visualization version   GIF version

Theorem limexissupab 43324
Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.)
Assertion
Ref Expression
limexissupab ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem limexissupab
StepHypRef Expression
1 limuni 6368 . . 3 (Lim 𝐴𝐴 = 𝐴)
21adantr 480 . 2 ((Lim 𝐴𝐴𝑉) → 𝐴 = 𝐴)
3 limord 6367 . . . 4 (Lim 𝐴 → Ord 𝐴)
4 ordsson 7716 . . . 4 (Ord 𝐴𝐴 ⊆ On)
53, 4syl 17 . . 3 (Lim 𝐴𝐴 ⊆ On)
6 onsupuni 43270 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
75, 6sylan 580 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
8 abid1 2867 . . 3 𝐴 = {𝑥𝑥𝐴}
9 supeq1 9329 . . 3 (𝐴 = {𝑥𝑥𝐴} → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
108, 9mp1i 13 . 2 ((Lim 𝐴𝐴𝑉) → sup(𝐴, On, E ) = sup({𝑥𝑥𝐴}, On, E ))
112, 7, 103eqtr2d 2772 1 ((Lim 𝐴𝐴𝑉) → 𝐴 = sup({𝑥𝑥𝐴}, On, E ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wss 3897   cuni 4856   E cep 5513  Ord word 6305  Oncon0 6306  Lim wlim 6307  supcsup 9324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-iota 6437  df-riota 7303  df-sup 9326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator