| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limexissupab | Structured version Visualization version GIF version | ||
| Description: An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| Ref | Expression |
|---|---|
| limexissupab | ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni 6382 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = ∪ 𝐴) |
| 3 | limord 6381 | . . . 4 ⊢ (Lim 𝐴 → Ord 𝐴) | |
| 4 | ordsson 7739 | . . . 4 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (Lim 𝐴 → 𝐴 ⊆ On) |
| 6 | onsupuni 43191 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | |
| 7 | 5, 6 | sylan 580 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) |
| 8 | abid1 2864 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} | |
| 9 | supeq1 9372 | . . 3 ⊢ (𝐴 = {𝑥 ∣ 𝑥 ∈ 𝐴} → sup(𝐴, On, E ) = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
| 11 | 2, 7, 10 | 3eqtr2d 2770 | 1 ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ⊆ wss 3911 ∪ cuni 4867 E cep 5530 Ord word 6319 Oncon0 6320 Lim wlim 6321 supcsup 9367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-iota 6452 df-riota 7326 df-sup 9369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |