![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6390 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1146 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ≠ wne 2937 ∅c0 4338 ∪ cuni 4911 Ord word 6384 Lim wlim 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6390 |
This theorem is referenced by: limuni2 6447 unizlim 6508 nlimsucg 7862 oa0r 8574 om1r 8579 oarec 8598 oeworde 8629 oeeulem 8637 infeq5i 9673 r1sdom 9811 rankxplim3 9918 cflm 10287 coflim 10298 cflim2 10300 cfss 10302 cfslbn 10304 limsucncmpi 36427 limexissup 43270 limiun 43271 limexissupab 43272 dfom6 43520 |
Copyright terms: Public domain | W3C validator |