MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6456
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6400 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1147 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wne 2946  c0 4352   cuni 4931  Ord word 6394  Lim wlim 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-lim 6400
This theorem is referenced by:  limuni2  6457  unizlim  6518  nlimsucg  7879  oa0r  8594  om1r  8599  oarec  8618  oeworde  8649  oeeulem  8657  infeq5i  9705  r1sdom  9843  rankxplim3  9950  cflm  10319  coflim  10330  cflim2  10332  cfss  10334  cfslbn  10336  limsucncmpi  36411  limexissup  43243  limiun  43244  limexissupab  43245  dfom6  43493
  Copyright terms: Public domain W3C validator