MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6397
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6340 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1147 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2926  c0 4299   cuni 4874  Ord word 6334  Lim wlim 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-lim 6340
This theorem is referenced by:  limuni2  6398  unizlim  6460  nlimsucg  7821  oa0r  8505  om1r  8510  oarec  8529  oeworde  8560  oeeulem  8568  infeq5i  9596  r1sdom  9734  rankxplim3  9841  cflm  10210  coflim  10221  cflim2  10223  cfss  10225  cfslbn  10227  limsucncmpi  36440  limexissup  43277  limiun  43278  limexissupab  43279  dfom6  43527
  Copyright terms: Public domain W3C validator