![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6368 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1145 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ≠ wne 2935 ∅c0 4318 ∪ cuni 4903 Ord word 6362 Lim wlim 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-lim 6368 |
This theorem is referenced by: limuni2 6425 unizlim 6486 nlimsucg 7840 oa0r 8552 om1r 8557 oarec 8576 oeworde 8607 oeeulem 8615 infeq5i 9651 r1sdom 9789 rankxplim3 9896 cflm 10265 coflim 10276 cflim2 10278 cfss 10280 cfslbn 10282 limsucncmpi 35865 limexissup 42633 limiun 42634 limexissupab 42635 dfom6 42884 |
Copyright terms: Public domain | W3C validator |