| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6337 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4296 ∪ cuni 4871 Ord word 6331 Lim wlim 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6337 |
| This theorem is referenced by: limuni2 6395 unizlim 6457 nlimsucg 7818 oa0r 8502 om1r 8507 oarec 8526 oeworde 8557 oeeulem 8565 infeq5i 9589 r1sdom 9727 rankxplim3 9834 cflm 10203 coflim 10214 cflim2 10216 cfss 10218 cfslbn 10220 limsucncmpi 36433 limexissup 43270 limiun 43271 limexissupab 43272 dfom6 43520 |
| Copyright terms: Public domain | W3C validator |