MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6424
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6368 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1145 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wne 2935  c0 4318   cuni 4903  Ord word 6362  Lim wlim 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-lim 6368
This theorem is referenced by:  limuni2  6425  unizlim  6486  nlimsucg  7840  oa0r  8552  om1r  8557  oarec  8576  oeworde  8607  oeeulem  8615  infeq5i  9651  r1sdom  9789  rankxplim3  9896  cflm  10265  coflim  10276  cflim2  10278  cfss  10280  cfslbn  10282  limsucncmpi  35865  limexissup  42633  limiun  42634  limexissupab  42635  dfom6  42884
  Copyright terms: Public domain W3C validator