![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6400 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∅c0 4352 ∪ cuni 4931 Ord word 6394 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-lim 6400 |
This theorem is referenced by: limuni2 6457 unizlim 6518 nlimsucg 7879 oa0r 8594 om1r 8599 oarec 8618 oeworde 8649 oeeulem 8657 infeq5i 9705 r1sdom 9843 rankxplim3 9950 cflm 10319 coflim 10330 cflim2 10332 cfss 10334 cfslbn 10336 limsucncmpi 36411 limexissup 43243 limiun 43244 limexissupab 43245 dfom6 43493 |
Copyright terms: Public domain | W3C validator |