MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6394
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6337 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1147 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925  c0 4296   cuni 4871  Ord word 6331  Lim wlim 6333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-lim 6337
This theorem is referenced by:  limuni2  6395  unizlim  6457  nlimsucg  7818  oa0r  8502  om1r  8507  oarec  8526  oeworde  8557  oeeulem  8565  infeq5i  9589  r1sdom  9727  rankxplim3  9834  cflm  10203  coflim  10214  cflim2  10216  cfss  10218  cfslbn  10220  limsucncmpi  36433  limexissup  43270  limiun  43271  limexissupab  43272  dfom6  43520
  Copyright terms: Public domain W3C validator