MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6326
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6271 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1146 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2943  c0 4256   cuni 4839  Ord word 6265  Lim wlim 6267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-lim 6271
This theorem is referenced by:  limuni2  6327  unizlim  6383  nlimsucg  7689  oa0r  8368  om1r  8374  oarec  8393  oeworde  8424  oeeulem  8432  infeq5i  9394  r1sdom  9532  rankxplim3  9639  cflm  10006  coflim  10017  cflim2  10019  cfss  10021  cfslbn  10023  limsucncmpi  34634  dfom6  41138
  Copyright terms: Public domain W3C validator