MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6414
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6357 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1147 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2932  c0 4308   cuni 4883  Ord word 6351  Lim wlim 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-lim 6357
This theorem is referenced by:  limuni2  6415  unizlim  6477  nlimsucg  7837  oa0r  8550  om1r  8555  oarec  8574  oeworde  8605  oeeulem  8613  infeq5i  9650  r1sdom  9788  rankxplim3  9895  cflm  10264  coflim  10275  cflim2  10277  cfss  10279  cfslbn  10281  limsucncmpi  36463  limexissup  43305  limiun  43306  limexissupab  43307  dfom6  43555
  Copyright terms: Public domain W3C validator