| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6340 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 ∅c0 4299 ∪ cuni 4874 Ord word 6334 Lim wlim 6336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6340 |
| This theorem is referenced by: limuni2 6398 unizlim 6460 nlimsucg 7821 oa0r 8505 om1r 8510 oarec 8529 oeworde 8560 oeeulem 8568 infeq5i 9596 r1sdom 9734 rankxplim3 9841 cflm 10210 coflim 10221 cflim2 10223 cfss 10225 cfslbn 10227 limsucncmpi 36440 limexissup 43277 limiun 43278 limexissupab 43279 dfom6 43527 |
| Copyright terms: Public domain | W3C validator |