| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6357 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2932 ∅c0 4308 ∪ cuni 4883 Ord word 6351 Lim wlim 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6357 |
| This theorem is referenced by: limuni2 6415 unizlim 6477 nlimsucg 7837 oa0r 8550 om1r 8555 oarec 8574 oeworde 8605 oeeulem 8613 infeq5i 9650 r1sdom 9788 rankxplim3 9895 cflm 10264 coflim 10275 cflim2 10277 cfss 10279 cfslbn 10281 limsucncmpi 36463 limexissup 43305 limiun 43306 limexissupab 43307 dfom6 43555 |
| Copyright terms: Public domain | W3C validator |