MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6373
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6316 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1147 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wne 2925  c0 4286   cuni 4861  Ord word 6310  Lim wlim 6312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-lim 6316
This theorem is referenced by:  limuni2  6374  unizlim  6435  nlimsucg  7782  oa0r  8463  om1r  8468  oarec  8487  oeworde  8518  oeeulem  8526  infeq5i  9551  r1sdom  9689  rankxplim3  9796  cflm  10163  coflim  10174  cflim2  10176  cfss  10178  cfslbn  10180  limsucncmpi  36418  limexissup  43254  limiun  43255  limexissupab  43256  dfom6  43504
  Copyright terms: Public domain W3C validator