MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6232
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6177 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1148 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2934  c0 4211   cuni 4796  Ord word 6171  Lim wlim 6173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1090  df-lim 6177
This theorem is referenced by:  limuni2  6233  unizlim  6289  nlimsucg  7576  oa0r  8194  om1r  8200  oarec  8219  oeworde  8250  oeeulem  8258  infeq5i  9172  r1sdom  9276  rankxplim3  9383  cflm  9750  coflim  9761  cflim2  9763  cfss  9765  cfslbn  9767  limsucncmpi  34272  dfom6  40692
  Copyright terms: Public domain W3C validator