Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6271 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1146 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2943 ∅c0 4256 ∪ cuni 4839 Ord word 6265 Lim wlim 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-lim 6271 |
This theorem is referenced by: limuni2 6327 unizlim 6383 nlimsucg 7689 oa0r 8368 om1r 8374 oarec 8393 oeworde 8424 oeeulem 8432 infeq5i 9394 r1sdom 9532 rankxplim3 9639 cflm 10006 coflim 10017 cflim2 10019 cfss 10021 cfslbn 10023 limsucncmpi 34634 dfom6 41138 |
Copyright terms: Public domain | W3C validator |