Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6256 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1145 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∅c0 4253 ∪ cuni 4836 Ord word 6250 Lim wlim 6252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-lim 6256 |
This theorem is referenced by: limuni2 6312 unizlim 6368 nlimsucg 7664 oa0r 8330 om1r 8336 oarec 8355 oeworde 8386 oeeulem 8394 infeq5i 9324 r1sdom 9463 rankxplim3 9570 cflm 9937 coflim 9948 cflim2 9950 cfss 9952 cfslbn 9954 limsucncmpi 34561 dfom6 41036 |
Copyright terms: Public domain | W3C validator |