MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6426
Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6370 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1148 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wne 2941  c0 4323   cuni 4909  Ord word 6364  Lim wlim 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1090  df-lim 6370
This theorem is referenced by:  limuni2  6427  unizlim  6488  nlimsucg  7831  oa0r  8538  om1r  8543  oarec  8562  oeworde  8593  oeeulem  8601  infeq5i  9631  r1sdom  9769  rankxplim3  9876  cflm  10245  coflim  10256  cflim2  10258  cfss  10260  cfslbn  10262  limsucncmpi  35378  limexissup  42079  limiun  42080  limexissupab  42081  dfom6  42330
  Copyright terms: Public domain W3C validator