| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6316 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2929 ∅c0 4282 ∪ cuni 4858 Ord word 6310 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6316 |
| This theorem is referenced by: limuni2 6374 unizlim 6435 nlimsucg 7778 oa0r 8459 om1r 8464 oarec 8483 oeworde 8514 oeeulem 8522 infeq5i 9533 r1sdom 9674 rankxplim3 9781 cflm 10148 coflim 10159 cflim2 10161 cfss 10163 cfslbn 10165 limsucncmpi 36510 limexissup 43399 limiun 43400 limexissupab 43401 dfom6 43649 |
| Copyright terms: Public domain | W3C validator |