| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6316 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4286 ∪ cuni 4861 Ord word 6310 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6316 |
| This theorem is referenced by: limuni2 6374 unizlim 6435 nlimsucg 7782 oa0r 8463 om1r 8468 oarec 8487 oeworde 8518 oeeulem 8526 infeq5i 9551 r1sdom 9689 rankxplim3 9796 cflm 10163 coflim 10174 cflim2 10176 cfss 10178 cfslbn 10180 limsucncmpi 36418 limexissup 43254 limiun 43255 limexissupab 43256 dfom6 43504 |
| Copyright terms: Public domain | W3C validator |