| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is its own supremum (union). Lemma 2.13 of [Schloeder] p. 5. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6311 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp3bi 1147 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4283 ∪ cuni 4859 Ord word 6305 Lim wlim 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6311 |
| This theorem is referenced by: limuni2 6369 unizlim 6430 nlimsucg 7772 oa0r 8453 om1r 8458 oarec 8477 oeworde 8508 oeeulem 8516 infeq5i 9526 r1sdom 9667 rankxplim3 9774 cflm 10141 coflim 10152 cflim2 10154 cfss 10156 cfslbn 10158 limsucncmpi 36485 limexissup 43320 limiun 43321 limexissupab 43322 dfom6 43570 |
| Copyright terms: Public domain | W3C validator |