Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limuni | Structured version Visualization version GIF version |
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limuni | ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6177 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp3bi 1148 | 1 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ≠ wne 2934 ∅c0 4211 ∪ cuni 4796 Ord word 6171 Lim wlim 6173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 df-lim 6177 |
This theorem is referenced by: limuni2 6233 unizlim 6289 nlimsucg 7576 oa0r 8194 om1r 8200 oarec 8219 oeworde 8250 oeeulem 8258 infeq5i 9172 r1sdom 9276 rankxplim3 9383 cflm 9750 coflim 9761 cflim2 9763 cfss 9765 cfslbn 9767 limsucncmpi 34272 dfom6 40692 |
Copyright terms: Public domain | W3C validator |