MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni Structured version   Visualization version   GIF version

Theorem limuni 6311
Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995.)
Assertion
Ref Expression
limuni (Lim 𝐴𝐴 = 𝐴)

Proof of Theorem limuni
StepHypRef Expression
1 df-lim 6256 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
21simp3bi 1145 1 (Lim 𝐴𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wne 2942  c0 4253   cuni 4836  Ord word 6250  Lim wlim 6252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-lim 6256
This theorem is referenced by:  limuni2  6312  unizlim  6368  nlimsucg  7664  oa0r  8330  om1r  8336  oarec  8355  oeworde  8386  oeeulem  8394  infeq5i  9324  r1sdom  9463  rankxplim3  9570  cflm  9937  coflim  9948  cflim2  9950  cfss  9952  cfslbn  9954  limsucncmpi  34561  dfom6  41036
  Copyright terms: Public domain W3C validator