| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lringnz | Structured version Visualization version GIF version | ||
| Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| lringnz.1 | ⊢ 1 = (1r‘𝑅) |
| lringnz.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| lringnz | ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lringnzr 20458 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
| 2 | lringnz.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 3 | lringnz.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | nzrnz 20432 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
| 5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ‘cfv 6486 0gc0g 17345 1rcur 20101 NzRingcnzr 20429 LRingclring 20455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-nzr 20430 df-lring 20456 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |