MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnz Structured version   Visualization version   GIF version

Theorem lringnz 20459
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1 1 = (1r𝑅)
lringnz.2 0 = (0g𝑅)
Assertion
Ref Expression
lringnz (𝑅 ∈ LRing → 10 )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 20457 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 lringnz.1 . . 3 1 = (1r𝑅)
3 lringnz.2 . . 3 0 = (0g𝑅)
42, 3nzrnz 20431 . 2 (𝑅 ∈ NzRing → 10 )
51, 4syl 17 1 (𝑅 ∈ LRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  cfv 6514  0gc0g 17409  1rcur 20097  NzRingcnzr 20428  LRingclring 20454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-nzr 20429  df-lring 20455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator