MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnz Structured version   Visualization version   GIF version

Theorem lringnz 20456
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1 1 = (1r𝑅)
lringnz.2 0 = (0g𝑅)
Assertion
Ref Expression
lringnz (𝑅 ∈ LRing → 10 )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 20454 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 lringnz.1 . . 3 1 = (1r𝑅)
3 lringnz.2 . . 3 0 = (0g𝑅)
42, 3nzrnz 20428 . 2 (𝑅 ∈ NzRing → 10 )
51, 4syl 17 1 (𝑅 ∈ LRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6481  0gc0g 17340  1rcur 20097  NzRingcnzr 20425  LRingclring 20451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-iota 6437  df-fv 6489  df-nzr 20426  df-lring 20452
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator