![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringnz | Structured version Visualization version GIF version |
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringnz.1 | ⊢ 1 = (1r‘𝑅) |
lringnz.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lringnz | ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnzr 20567 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
2 | lringnz.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | lringnz.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | nzrnz 20541 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6569 0gc0g 17495 1rcur 20208 NzRingcnzr 20538 LRingclring 20564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-nzr 20539 df-lring 20565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |