MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringnz Structured version   Visualization version   GIF version

Theorem lringnz 20305
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lringnz.1 1 = (1r𝑅)
lringnz.2 0 = (0g𝑅)
Assertion
Ref Expression
lringnz (𝑅 ∈ LRing → 10 )

Proof of Theorem lringnz
StepHypRef Expression
1 lringnzr 20303 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 lringnz.1 . . 3 1 = (1r𝑅)
3 lringnz.2 . . 3 0 = (0g𝑅)
42, 3nzrnz 20286 . 2 (𝑅 ∈ NzRing → 10 )
51, 4syl 17 1 (𝑅 ∈ LRing → 10 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2940  cfv 6540  0gc0g 17381  1rcur 19998  NzRingcnzr 20283  LRingclring 20300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-nzr 20284  df-lring 20301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator