![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringnz | Structured version Visualization version GIF version |
Description: A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringnz.1 | ⊢ 1 = (1r‘𝑅) |
lringnz.2 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lringnz | ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnzr 20569 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
2 | lringnz.1 | . . 3 ⊢ 1 = (1r‘𝑅) | |
3 | lringnz.2 | . . 3 ⊢ 0 = (0g‘𝑅) | |
4 | 2, 3 | nzrnz 20543 | . 2 ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) |
5 | 1, 4 | syl 17 | 1 ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6575 0gc0g 17501 1rcur 20210 NzRingcnzr 20540 LRingclring 20566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6527 df-fv 6583 df-nzr 20541 df-lring 20567 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |