MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringring Structured version   Visualization version   GIF version

Theorem lringring 20311
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 20310 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 20294 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Ringcrg 20055  NzRingcnzr 20290  LRingclring 20307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-in 3955  df-ss 3965  df-nzr 20291  df-lring 20308
This theorem is referenced by:  lringuplu  20313
  Copyright terms: Public domain W3C validator