![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringring | Structured version Visualization version GIF version |
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringring | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnzr 20310 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
2 | nzrring 20294 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 Ringcrg 20055 NzRingcnzr 20290 LRingclring 20307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-in 3955 df-ss 3965 df-nzr 20291 df-lring 20308 |
This theorem is referenced by: lringuplu 20313 |
Copyright terms: Public domain | W3C validator |