![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lringring | Structured version Visualization version GIF version |
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
Ref | Expression |
---|---|
lringring | ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lringnzr 20567 | . 2 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | |
2 | nzrring 20542 | . 2 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Ringcrg 20260 NzRingcnzr 20538 LRingclring 20564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-ss 3983 df-nzr 20539 df-lring 20565 |
This theorem is referenced by: lringuplu 20570 |
Copyright terms: Public domain | W3C validator |