MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringring Structured version   Visualization version   GIF version

Theorem lringring 20510
Description: A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Assertion
Ref Expression
lringring (𝑅 ∈ LRing → 𝑅 ∈ Ring)

Proof of Theorem lringring
StepHypRef Expression
1 lringnzr 20509 . 2 (𝑅 ∈ LRing → 𝑅 ∈ NzRing)
2 nzrring 20484 . 2 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
31, 2syl 17 1 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Ringcrg 20198  NzRingcnzr 20480  LRingclring 20506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-ss 3948  df-nzr 20481  df-lring 20507
This theorem is referenced by:  lringuplu  20512
  Copyright terms: Public domain W3C validator