MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringuplu Structured version   Visualization version   GIF version

Theorem lringuplu 20453
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b (𝜑𝐵 = (Base‘𝑅))
lring.u (𝜑𝑈 = (Unit‘𝑅))
lring.p (𝜑+ = (+g𝑅))
lring.l (𝜑𝑅 ∈ LRing)
lring.s (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
lring.x (𝜑𝑋𝐵)
lring.y (𝜑𝑌𝐵)
Assertion
Ref Expression
lringuplu (𝜑 → (𝑋𝑈𝑌𝑈))

Proof of Theorem lringuplu
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8 (𝜑𝑅 ∈ LRing)
2 lringring 20451 . . . . . . . 8 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 lring.x . . . . . . . 8 (𝜑𝑋𝐵)
5 lring.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
64, 5eleqtrd 2830 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
7 lring.s . . . . . . . 8 (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
8 lring.u . . . . . . . 8 (𝜑𝑈 = (Unit‘𝑅))
97, 8eleqtrd 2830 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
10 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2729 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
12 eqid 2729 . . . . . . . 8 (/r𝑅) = (/r𝑅)
13 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1410, 11, 12, 13dvrcan1 20318 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
153, 6, 9, 14syl3anc 1373 . . . . . 6 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
18 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
199adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
2011, 13unitmulcl 20289 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2117, 18, 19, 20syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2216, 21eqeltrrd 2829 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝑅))
238adantr 480 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
2422, 23eleqtrrd 2831 . . 3 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋𝑈)
2524orcd 873 . 2 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
26 lring.y . . . . . . . 8 (𝜑𝑌𝐵)
2726, 5eleqtrd 2830 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
2810, 11, 12, 13dvrcan1 20318 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
293, 27, 9, 28syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
3029adantr 480 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
313adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
32 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
339adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
3411, 13unitmulcl 20289 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3531, 32, 33, 34syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3630, 35eqeltrrd 2829 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ (Unit‘𝑅))
378adantr 480 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
3836, 37eleqtrrd 2831 . . 3 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌𝑈)
3938olcd 874 . 2 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
40 eqid 2729 . . . . . 6 (+g𝑅) = (+g𝑅)
4110, 11, 40, 12dvrdir 20321 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅))) → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
423, 6, 27, 9, 41syl13anc 1374 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
43 lring.p . . . . . . 7 (𝜑+ = (+g𝑅))
4443eqcomd 2735 . . . . . 6 (𝜑 → (+g𝑅) = + )
4544oveqd 7404 . . . . 5 (𝜑 → (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌))
463ringgrpd 20151 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4710, 40, 46, 6, 27grpcld 18879 . . . . . 6 (𝜑 → (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅))
48 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
4910, 11, 12, 48dvreq1 20320 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
503, 47, 9, 49syl3anc 1373 . . . . 5 (𝜑 → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
5145, 50mpbird 257 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅))
5242, 51eqtr3d 2766 . . 3 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅))
53 oveq2 7395 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
5453eqeq1d 2731 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅)))
55 eleq1 2816 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (𝑣 ∈ (Unit‘𝑅) ↔ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
5655orbi2d 915 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
5754, 56imbi12d 344 . . . 4 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))))
58 oveq1 7394 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣))
5958eqeq1d 2731 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅)))
60 eleq1 2816 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢 ∈ (Unit‘𝑅) ↔ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
6160orbi1d 916 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6259, 61imbi12d 344 . . . . . 6 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6362ralbidv 3156 . . . . 5 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6410, 40, 48, 11islring 20449 . . . . . . 7 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
651, 64sylib 218 . . . . . 6 (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6665simprd 495 . . . . 5 (𝜑 → ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6710, 11, 12dvrcl 20313 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
683, 6, 9, 67syl3anc 1373 . . . . 5 (𝜑 → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
6963, 66, 68rspcdva 3589 . . . 4 (𝜑 → ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
7010, 11, 12dvrcl 20313 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
713, 27, 9, 70syl3anc 1373 . . . 4 (𝜑 → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
7257, 69, 71rspcdva 3589 . . 3 (𝜑 → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
7352, 72mpd 15 . 2 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
7425, 39, 73mpjaodan 960 1 (𝜑 → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  1rcur 20090  Ringcrg 20142  Unitcui 20264  /rcdvr 20309  NzRingcnzr 20421  LRingclring 20447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-lring 20448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator