Step | Hyp | Ref
| Expression |
1 | | lring.l |
. . . . . . . 8
β’ (π β π
β LRing) |
2 | | lringring 20304 |
. . . . . . . 8
β’ (π
β LRing β π
β Ring) |
3 | 1, 2 | syl 17 |
. . . . . . 7
β’ (π β π
β Ring) |
4 | | lring.x |
. . . . . . . 8
β’ (π β π β π΅) |
5 | | lring.b |
. . . . . . . 8
β’ (π β π΅ = (Baseβπ
)) |
6 | 4, 5 | eleqtrd 2835 |
. . . . . . 7
β’ (π β π β (Baseβπ
)) |
7 | | lring.s |
. . . . . . . 8
β’ (π β (π + π) β π) |
8 | | lring.u |
. . . . . . . 8
β’ (π β π = (Unitβπ
)) |
9 | 7, 8 | eleqtrd 2835 |
. . . . . . 7
β’ (π β (π + π) β (Unitβπ
)) |
10 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ
) =
(Baseβπ
) |
11 | | eqid 2732 |
. . . . . . . 8
β’
(Unitβπ
) =
(Unitβπ
) |
12 | | eqid 2732 |
. . . . . . . 8
β’
(/rβπ
) = (/rβπ
) |
13 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ
) = (.rβπ
) |
14 | 10, 11, 12, 13 | dvrcan1 20215 |
. . . . . . 7
β’ ((π
β Ring β§ π β (Baseβπ
) β§ (π + π) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
15 | 3, 6, 9, 14 | syl3anc 1371 |
. . . . . 6
β’ (π β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
16 | 15 | adantr 481 |
. . . . 5
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
17 | 3 | adantr 481 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π
β Ring) |
18 | | simpr 485 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π(/rβπ
)(π + π)) β (Unitβπ
)) |
19 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π + π) β (Unitβπ
)) |
20 | 11, 13 | unitmulcl 20186 |
. . . . . 6
β’ ((π
β Ring β§ (π(/rβπ
)(π + π)) β (Unitβπ
) β§ (π + π) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) β (Unitβπ
)) |
21 | 17, 18, 19, 20 | syl3anc 1371 |
. . . . 5
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) β (Unitβπ
)) |
22 | 16, 21 | eqeltrrd 2834 |
. . . 4
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π β (Unitβπ
)) |
23 | 8 | adantr 481 |
. . . 4
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π = (Unitβπ
)) |
24 | 22, 23 | eleqtrrd 2836 |
. . 3
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π β π) |
25 | 24 | orcd 871 |
. 2
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π β π β¨ π β π)) |
26 | | lring.y |
. . . . . . . 8
β’ (π β π β π΅) |
27 | 26, 5 | eleqtrd 2835 |
. . . . . . 7
β’ (π β π β (Baseβπ
)) |
28 | 10, 11, 12, 13 | dvrcan1 20215 |
. . . . . . 7
β’ ((π
β Ring β§ π β (Baseβπ
) β§ (π + π) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
29 | 3, 27, 9, 28 | syl3anc 1371 |
. . . . . 6
β’ (π β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
30 | 29 | adantr 481 |
. . . . 5
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) = π) |
31 | 3 | adantr 481 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π
β Ring) |
32 | | simpr 485 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π(/rβπ
)(π + π)) β (Unitβπ
)) |
33 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π + π) β (Unitβπ
)) |
34 | 11, 13 | unitmulcl 20186 |
. . . . . 6
β’ ((π
β Ring β§ (π(/rβπ
)(π + π)) β (Unitβπ
) β§ (π + π) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) β (Unitβπ
)) |
35 | 31, 32, 33, 34 | syl3anc 1371 |
. . . . 5
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β ((π(/rβπ
)(π + π))(.rβπ
)(π + π)) β (Unitβπ
)) |
36 | 30, 35 | eqeltrrd 2834 |
. . . 4
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π β (Unitβπ
)) |
37 | 8 | adantr 481 |
. . . 4
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π = (Unitβπ
)) |
38 | 36, 37 | eleqtrrd 2836 |
. . 3
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β π β π) |
39 | 38 | olcd 872 |
. 2
β’ ((π β§ (π(/rβπ
)(π + π)) β (Unitβπ
)) β (π β π β¨ π β π)) |
40 | | eqid 2732 |
. . . . . 6
β’
(+gβπ
) = (+gβπ
) |
41 | 10, 11, 40, 12 | dvrdir 20218 |
. . . . 5
β’ ((π
β Ring β§ (π β (Baseβπ
) β§ π β (Baseβπ
) β§ (π + π) β (Unitβπ
))) β ((π(+gβπ
)π)(/rβπ
)(π + π)) = ((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π)))) |
42 | 3, 6, 27, 9, 41 | syl13anc 1372 |
. . . 4
β’ (π β ((π(+gβπ
)π)(/rβπ
)(π + π)) = ((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π)))) |
43 | | lring.p |
. . . . . . 7
β’ (π β + =
(+gβπ
)) |
44 | 43 | eqcomd 2738 |
. . . . . 6
β’ (π β (+gβπ
) = + ) |
45 | 44 | oveqd 7422 |
. . . . 5
β’ (π β (π(+gβπ
)π) = (π + π)) |
46 | 3 | ringgrpd 20058 |
. . . . . . 7
β’ (π β π
β Grp) |
47 | 10, 40, 46, 6, 27 | grpcld 18829 |
. . . . . 6
β’ (π β (π(+gβπ
)π) β (Baseβπ
)) |
48 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ
) = (1rβπ
) |
49 | 10, 11, 12, 48 | dvreq1 20217 |
. . . . . 6
β’ ((π
β Ring β§ (π(+gβπ
)π) β (Baseβπ
) β§ (π + π) β (Unitβπ
)) β (((π(+gβπ
)π)(/rβπ
)(π + π)) = (1rβπ
) β (π(+gβπ
)π) = (π + π))) |
50 | 3, 47, 9, 49 | syl3anc 1371 |
. . . . 5
β’ (π β (((π(+gβπ
)π)(/rβπ
)(π + π)) = (1rβπ
) β (π(+gβπ
)π) = (π + π))) |
51 | 45, 50 | mpbird 256 |
. . . 4
β’ (π β ((π(+gβπ
)π)(/rβπ
)(π + π)) = (1rβπ
)) |
52 | 42, 51 | eqtr3d 2774 |
. . 3
β’ (π β ((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π))) = (1rβπ
)) |
53 | | oveq2 7413 |
. . . . . 6
β’ (π£ = (π(/rβπ
)(π + π)) β ((π(/rβπ
)(π + π))(+gβπ
)π£) = ((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π)))) |
54 | 53 | eqeq1d 2734 |
. . . . 5
β’ (π£ = (π(/rβπ
)(π + π)) β (((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π))) = (1rβπ
))) |
55 | | eleq1 2821 |
. . . . . 6
β’ (π£ = (π(/rβπ
)(π + π)) β (π£ β (Unitβπ
) β (π(/rβπ
)(π + π)) β (Unitβπ
))) |
56 | 55 | orbi2d 914 |
. . . . 5
β’ (π£ = (π(/rβπ
)(π + π)) β (((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
)) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ (π(/rβπ
)(π + π)) β (Unitβπ
)))) |
57 | 54, 56 | imbi12d 344 |
. . . 4
β’ (π£ = (π(/rβπ
)(π + π)) β ((((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
))) β (((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π))) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ (π(/rβπ
)(π + π)) β (Unitβπ
))))) |
58 | | oveq1 7412 |
. . . . . . . 8
β’ (π’ = (π(/rβπ
)(π + π)) β (π’(+gβπ
)π£) = ((π(/rβπ
)(π + π))(+gβπ
)π£)) |
59 | 58 | eqeq1d 2734 |
. . . . . . 7
β’ (π’ = (π(/rβπ
)(π + π)) β ((π’(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
))) |
60 | | eleq1 2821 |
. . . . . . . 8
β’ (π’ = (π(/rβπ
)(π + π)) β (π’ β (Unitβπ
) β (π(/rβπ
)(π + π)) β (Unitβπ
))) |
61 | 60 | orbi1d 915 |
. . . . . . 7
β’ (π’ = (π(/rβπ
)(π + π)) β ((π’ β (Unitβπ
) β¨ π£ β (Unitβπ
)) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
)))) |
62 | 59, 61 | imbi12d 344 |
. . . . . 6
β’ (π’ = (π(/rβπ
)(π + π)) β (((π’(+gβπ
)π£) = (1rβπ
) β (π’ β (Unitβπ
) β¨ π£ β (Unitβπ
))) β (((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
))))) |
63 | 62 | ralbidv 3177 |
. . . . 5
β’ (π’ = (π(/rβπ
)(π + π)) β (βπ£ β (Baseβπ
)((π’(+gβπ
)π£) = (1rβπ
) β (π’ β (Unitβπ
) β¨ π£ β (Unitβπ
))) β βπ£ β (Baseβπ
)(((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
))))) |
64 | 10, 40, 48, 11 | islring 20302 |
. . . . . . 7
β’ (π
β LRing β (π
β NzRing β§
βπ’ β
(Baseβπ
)βπ£ β (Baseβπ
)((π’(+gβπ
)π£) = (1rβπ
) β (π’ β (Unitβπ
) β¨ π£ β (Unitβπ
))))) |
65 | 1, 64 | sylib 217 |
. . . . . 6
β’ (π β (π
β NzRing β§ βπ’ β (Baseβπ
)βπ£ β (Baseβπ
)((π’(+gβπ
)π£) = (1rβπ
) β (π’ β (Unitβπ
) β¨ π£ β (Unitβπ
))))) |
66 | 65 | simprd 496 |
. . . . 5
β’ (π β βπ’ β (Baseβπ
)βπ£ β (Baseβπ
)((π’(+gβπ
)π£) = (1rβπ
) β (π’ β (Unitβπ
) β¨ π£ β (Unitβπ
)))) |
67 | 10, 11, 12 | dvrcl 20210 |
. . . . . 6
β’ ((π
β Ring β§ π β (Baseβπ
) β§ (π + π) β (Unitβπ
)) β (π(/rβπ
)(π + π)) β (Baseβπ
)) |
68 | 3, 6, 9, 67 | syl3anc 1371 |
. . . . 5
β’ (π β (π(/rβπ
)(π + π)) β (Baseβπ
)) |
69 | 63, 66, 68 | rspcdva 3613 |
. . . 4
β’ (π β βπ£ β (Baseβπ
)(((π(/rβπ
)(π + π))(+gβπ
)π£) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ π£ β (Unitβπ
)))) |
70 | 10, 11, 12 | dvrcl 20210 |
. . . . 5
β’ ((π
β Ring β§ π β (Baseβπ
) β§ (π + π) β (Unitβπ
)) β (π(/rβπ
)(π + π)) β (Baseβπ
)) |
71 | 3, 27, 9, 70 | syl3anc 1371 |
. . . 4
β’ (π β (π(/rβπ
)(π + π)) β (Baseβπ
)) |
72 | 57, 69, 71 | rspcdva 3613 |
. . 3
β’ (π β (((π(/rβπ
)(π + π))(+gβπ
)(π(/rβπ
)(π + π))) = (1rβπ
) β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ (π(/rβπ
)(π + π)) β (Unitβπ
)))) |
73 | 52, 72 | mpd 15 |
. 2
β’ (π β ((π(/rβπ
)(π + π)) β (Unitβπ
) β¨ (π(/rβπ
)(π + π)) β (Unitβπ
))) |
74 | 25, 39, 73 | mpjaodan 957 |
1
β’ (π β (π β π β¨ π β π)) |