MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lringuplu Structured version   Visualization version   GIF version

Theorem lringuplu 20461
Description: If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
Hypotheses
Ref Expression
lring.b (𝜑𝐵 = (Base‘𝑅))
lring.u (𝜑𝑈 = (Unit‘𝑅))
lring.p (𝜑+ = (+g𝑅))
lring.l (𝜑𝑅 ∈ LRing)
lring.s (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
lring.x (𝜑𝑋𝐵)
lring.y (𝜑𝑌𝐵)
Assertion
Ref Expression
lringuplu (𝜑 → (𝑋𝑈𝑌𝑈))

Proof of Theorem lringuplu
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lring.l . . . . . . . 8 (𝜑𝑅 ∈ LRing)
2 lringring 20459 . . . . . . . 8 (𝑅 ∈ LRing → 𝑅 ∈ Ring)
31, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4 lring.x . . . . . . . 8 (𝜑𝑋𝐵)
5 lring.b . . . . . . . 8 (𝜑𝐵 = (Base‘𝑅))
64, 5eleqtrd 2835 . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝑅))
7 lring.s . . . . . . . 8 (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
8 lring.u . . . . . . . 8 (𝜑𝑈 = (Unit‘𝑅))
97, 8eleqtrd 2835 . . . . . . 7 (𝜑 → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
10 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2733 . . . . . . . 8 (Unit‘𝑅) = (Unit‘𝑅)
12 eqid 2733 . . . . . . . 8 (/r𝑅) = (/r𝑅)
13 eqid 2733 . . . . . . . 8 (.r𝑅) = (.r𝑅)
1410, 11, 12, 13dvrcan1 20329 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
153, 6, 9, 14syl3anc 1373 . . . . . 6 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
1615adantr 480 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑋)
173adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
18 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
199adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
2011, 13unitmulcl 20300 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2117, 18, 19, 20syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
2216, 21eqeltrrd 2834 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋 ∈ (Unit‘𝑅))
238adantr 480 . . . 4 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
2422, 23eleqtrrd 2836 . . 3 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑋𝑈)
2524orcd 873 . 2 ((𝜑 ∧ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
26 lring.y . . . . . . . 8 (𝜑𝑌𝐵)
2726, 5eleqtrd 2835 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑅))
2810, 11, 12, 13dvrcan1 20329 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
293, 27, 9, 28syl3anc 1373 . . . . . 6 (𝜑 → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
3029adantr 480 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) = 𝑌)
313adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑅 ∈ Ring)
32 simpr 484 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
339adantr 480 . . . . . 6 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋 + 𝑌) ∈ (Unit‘𝑅))
3411, 13unitmulcl 20300 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3531, 32, 33, 34syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → ((𝑌(/r𝑅)(𝑋 + 𝑌))(.r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))
3630, 35eqeltrrd 2834 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌 ∈ (Unit‘𝑅))
378adantr 480 . . . 4 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑈 = (Unit‘𝑅))
3836, 37eleqtrrd 2836 . . 3 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → 𝑌𝑈)
3938olcd 874 . 2 ((𝜑 ∧ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)) → (𝑋𝑈𝑌𝑈))
40 eqid 2733 . . . . . 6 (+g𝑅) = (+g𝑅)
4110, 11, 40, 12dvrdir 20332 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅))) → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
423, 6, 27, 9, 41syl13anc 1374 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
43 lring.p . . . . . . 7 (𝜑+ = (+g𝑅))
4443eqcomd 2739 . . . . . 6 (𝜑 → (+g𝑅) = + )
4544oveqd 7369 . . . . 5 (𝜑 → (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌))
463ringgrpd 20162 . . . . . . 7 (𝜑𝑅 ∈ Grp)
4710, 40, 46, 6, 27grpcld 18862 . . . . . 6 (𝜑 → (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅))
48 eqid 2733 . . . . . . 7 (1r𝑅) = (1r𝑅)
4910, 11, 12, 48dvreq1 20331 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋(+g𝑅)𝑌) ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
503, 47, 9, 49syl3anc 1373 . . . . 5 (𝜑 → (((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅) ↔ (𝑋(+g𝑅)𝑌) = (𝑋 + 𝑌)))
5145, 50mpbird 257 . . . 4 (𝜑 → ((𝑋(+g𝑅)𝑌)(/r𝑅)(𝑋 + 𝑌)) = (1r𝑅))
5242, 51eqtr3d 2770 . . 3 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅))
53 oveq2 7360 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))))
5453eqeq1d 2735 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅)))
55 eleq1 2821 . . . . . 6 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (𝑣 ∈ (Unit‘𝑅) ↔ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
5655orbi2d 915 . . . . 5 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → (((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
5754, 56imbi12d 344 . . . 4 (𝑣 = (𝑌(/r𝑅)(𝑋 + 𝑌)) → ((((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))))
58 oveq1 7359 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢(+g𝑅)𝑣) = ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣))
5958eqeq1d 2735 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢(+g𝑅)𝑣) = (1r𝑅) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅)))
60 eleq1 2821 . . . . . . . 8 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (𝑢 ∈ (Unit‘𝑅) ↔ (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
6160orbi1d 916 . . . . . . 7 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → ((𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)) ↔ ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6259, 61imbi12d 344 . . . . . 6 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6362ralbidv 3156 . . . . 5 (𝑢 = (𝑋(/r𝑅)(𝑋 + 𝑌)) → (∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))) ↔ ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6410, 40, 48, 11islring 20457 . . . . . . 7 (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
651, 64sylib 218 . . . . . 6 (𝜑 → (𝑅 ∈ NzRing ∧ ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅)))))
6665simprd 495 . . . . 5 (𝜑 → ∀𝑢 ∈ (Base‘𝑅)∀𝑣 ∈ (Base‘𝑅)((𝑢(+g𝑅)𝑣) = (1r𝑅) → (𝑢 ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
6710, 11, 12dvrcl 20324 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
683, 6, 9, 67syl3anc 1373 . . . . 5 (𝜑 → (𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
6963, 66, 68rspcdva 3574 . . . 4 (𝜑 → ∀𝑣 ∈ (Base‘𝑅)(((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)𝑣) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ 𝑣 ∈ (Unit‘𝑅))))
7010, 11, 12dvrcl 20324 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌 ∈ (Base‘𝑅) ∧ (𝑋 + 𝑌) ∈ (Unit‘𝑅)) → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
713, 27, 9, 70syl3anc 1373 . . . 4 (𝜑 → (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Base‘𝑅))
7257, 69, 71rspcdva 3574 . . 3 (𝜑 → (((𝑋(/r𝑅)(𝑋 + 𝑌))(+g𝑅)(𝑌(/r𝑅)(𝑋 + 𝑌))) = (1r𝑅) → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅))))
7352, 72mpd 15 . 2 (𝜑 → ((𝑋(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅) ∨ (𝑌(/r𝑅)(𝑋 + 𝑌)) ∈ (Unit‘𝑅)))
7425, 39, 73mpjaodan 960 1 (𝜑 → (𝑋𝑈𝑌𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  .rcmulr 17164  1rcur 20101  Ringcrg 20153  Unitcui 20275  /rcdvr 20320  NzRingcnzr 20429  LRingclring 20455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20430  df-lring 20456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator