|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > euanv | Structured version Visualization version GIF version | ||
| Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| euanv | ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | euex 2576 | . . . 4 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 3 | 2 | exlimiv 1929 | . . . 4 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → 𝜑) | 
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → 𝜑) | 
| 5 | ibar 528 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 6 | 5 | eubidv 2585 | . . . 4 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥(𝜑 ∧ 𝜓))) | 
| 7 | 6 | biimprcd 250 | . . 3 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (𝜑 → ∃!𝑥𝜓)) | 
| 8 | 4, 7 | jcai 516 | . 2 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) → (𝜑 ∧ ∃!𝑥𝜓)) | 
| 9 | 6 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∧ 𝜓)) | 
| 10 | 8, 9 | impbii 209 | 1 ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∃!weu 2567 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-eu 2568 | 
| This theorem is referenced by: eueq2 3715 2reu5lem1 3760 fsn 7154 dfac5lem5 10168 | 
| Copyright terms: Public domain | W3C validator |