MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Structured version   Visualization version   GIF version

Theorem mpbidi 240
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min (𝜃 → (𝜑𝜓))
mpbidi.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mpbidi (𝜃 → (𝜑𝜒))

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2 (𝜃 → (𝜑𝜓))
2 mpbidi.maj . . 3 (𝜑 → (𝜓𝜒))
32biimpd 228 . 2 (𝜑 → (𝜓𝜒))
41, 3sylcom 30 1 (𝜃 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  ralxfr2d  5333  ovmpt4g  7420  ov3  7435  omeulem2  8414  domtriomlem  10198  nsmallnq  10733  bposlem1  26432  pntrsumbnd  26714  elntg2  27353  mptsnunlem  35509  poimirlem27  35804  frege92  41563  nzss  41935  setis  46403
  Copyright terms: Public domain W3C validator