MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Structured version   Visualization version   GIF version

Theorem mpbidi 241
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min (𝜃 → (𝜑𝜓))
mpbidi.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mpbidi (𝜃 → (𝜑𝜒))

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2 (𝜃 → (𝜑𝜓))
2 mpbidi.maj . . 3 (𝜑 → (𝜓𝜒))
32biimpd 229 . 2 (𝜑 → (𝜓𝜒))
41, 3sylcom 30 1 (𝜃 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  ralxfr2d  5360  ovmpt4g  7516  ov3  7532  omeulem2  8524  domtriomlem  10371  nsmallnq  10906  bposlem1  27171  pntrsumbnd  27453  elntg2  28888  mptsnunlem  37299  poimirlem27  37614  refressn  38407  frege92  43917  nzss  44279  modelaxreplem1  44941  ormklocald  46845  setis  49660
  Copyright terms: Public domain W3C validator