| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version GIF version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
| mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
| 2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ralxfr2d 5380 ovmpt4g 7554 ov3 7570 omeulem2 8595 domtriomlem 10456 nsmallnq 10991 bposlem1 27247 pntrsumbnd 27529 elntg2 28964 mptsnunlem 37356 poimirlem27 37671 refressn 38461 frege92 43979 nzss 44341 modelaxreplem1 45003 ormklocald 46903 setis 49562 |
| Copyright terms: Public domain | W3C validator |