Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version GIF version |
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
Ref | Expression |
---|---|
mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimpd 228 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ralxfr2d 5333 ovmpt4g 7420 ov3 7435 omeulem2 8414 domtriomlem 10198 nsmallnq 10733 bposlem1 26432 pntrsumbnd 26714 elntg2 27353 mptsnunlem 35509 poimirlem27 35804 frege92 41563 nzss 41935 setis 46403 |
Copyright terms: Public domain | W3C validator |