MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Structured version   Visualization version   GIF version

Theorem mpbidi 241
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min (𝜃 → (𝜑𝜓))
mpbidi.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mpbidi (𝜃 → (𝜑𝜒))

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2 (𝜃 → (𝜑𝜓))
2 mpbidi.maj . . 3 (𝜑 → (𝜓𝜒))
32biimpd 229 . 2 (𝜑 → (𝜓𝜒))
41, 3sylcom 30 1 (𝜃 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  ralxfr2d  5343  ovmpt4g  7488  ov3  7504  omeulem2  8493  domtriomlem  10328  nsmallnq  10863  bposlem1  27217  pntrsumbnd  27499  elntg2  28958  mptsnunlem  37372  poimirlem27  37687  refressn  38480  frege92  43988  nzss  44350  modelaxreplem1  45011  ormklocald  46912  setis  49730
  Copyright terms: Public domain W3C validator