| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version GIF version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
| mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
| 2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ralxfr2d 5360 ovmpt4g 7516 ov3 7532 omeulem2 8524 domtriomlem 10371 nsmallnq 10906 bposlem1 27171 pntrsumbnd 27453 elntg2 28888 mptsnunlem 37299 poimirlem27 37614 refressn 38407 frege92 43917 nzss 44279 modelaxreplem1 44941 ormklocald 46845 setis 49660 |
| Copyright terms: Public domain | W3C validator |