| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version GIF version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
| mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
| 2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ralxfr2d 5343 ovmpt4g 7488 ov3 7504 omeulem2 8493 domtriomlem 10328 nsmallnq 10863 bposlem1 27217 pntrsumbnd 27499 elntg2 28958 mptsnunlem 37372 poimirlem27 37687 refressn 38480 frege92 43988 nzss 44350 modelaxreplem1 45011 ormklocald 46912 setis 49730 |
| Copyright terms: Public domain | W3C validator |