| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpbidi | Structured version Visualization version GIF version | ||
| Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.) |
| Ref | Expression |
|---|---|
| mpbidi.min | ⊢ (𝜃 → (𝜑 → 𝜓)) |
| mpbidi.maj | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbidi | ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbidi.min | . 2 ⊢ (𝜃 → (𝜑 → 𝜓)) | |
| 2 | mpbidi.maj | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | sylcom 30 | 1 ⊢ (𝜃 → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ralxfr2d 5368 ovmpt4g 7539 ov3 7555 omeulem2 8550 domtriomlem 10402 nsmallnq 10937 bposlem1 27202 pntrsumbnd 27484 elntg2 28919 mptsnunlem 37333 poimirlem27 37648 refressn 38441 frege92 43951 nzss 44313 modelaxreplem1 44975 ormklocald 46879 setis 49691 |
| Copyright terms: Public domain | W3C validator |