MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpbidi Structured version   Visualization version   GIF version

Theorem mpbidi 240
Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 9-Aug-1994.)
Hypotheses
Ref Expression
mpbidi.min (𝜃 → (𝜑𝜓))
mpbidi.maj (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mpbidi (𝜃 → (𝜑𝜒))

Proof of Theorem mpbidi
StepHypRef Expression
1 mpbidi.min . 2 (𝜃 → (𝜑𝜓))
2 mpbidi.maj . . 3 (𝜑 → (𝜓𝜒))
32biimpd 228 . 2 (𝜑 → (𝜓𝜒))
41, 3sylcom 30 1 (𝜃 → (𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  ralxfr2d  5404  ovmpt4g  7562  ov3  7578  omeulem2  8597  domtriomlem  10459  nsmallnq  10994  bposlem1  27210  pntrsumbnd  27492  elntg2  28789  mptsnunlem  36811  poimirlem27  37114  refressn  37909  frege92  43379  nzss  43748  setis  48123
  Copyright terms: Public domain W3C validator