MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsmallnq Structured version   Visualization version   GIF version

Theorem nsmallnq 10984
Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nsmallnq (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nsmallnq
StepHypRef Expression
1 halfnq 10983 . 2 (𝐴Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴)
2 eleq1a 2828 . . . . 5 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 +Q 𝑥) ∈ Q))
3 addnqf 10955 . . . . . . . 8 +Q :(Q × Q)⟶Q
43fdmi 6714 . . . . . . 7 dom +Q = (Q × Q)
5 0nnq 10931 . . . . . . 7 ¬ ∅ ∈ Q
64, 5ndmovrcl 7588 . . . . . 6 ((𝑥 +Q 𝑥) ∈ Q → (𝑥Q𝑥Q))
7 ltaddnq 10981 . . . . . 6 ((𝑥Q𝑥Q) → 𝑥 <Q (𝑥 +Q 𝑥))
86, 7syl 17 . . . . 5 ((𝑥 +Q 𝑥) ∈ Q𝑥 <Q (𝑥 +Q 𝑥))
92, 8syl6 35 . . . 4 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴𝑥 <Q (𝑥 +Q 𝑥)))
10 breq2 5121 . . . 4 ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑥) ↔ 𝑥 <Q 𝐴))
119, 10mpbidi 241 . . 3 (𝐴Q → ((𝑥 +Q 𝑥) = 𝐴𝑥 <Q 𝐴))
1211eximdv 1916 . 2 (𝐴Q → (∃𝑥(𝑥 +Q 𝑥) = 𝐴 → ∃𝑥 𝑥 <Q 𝐴))
131, 12mpd 15 1 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107   class class class wbr 5117   × cxp 5650  (class class class)co 7400  Qcnq 10859   +Q cplq 10862   <Q cltq 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-oadd 8479  df-omul 8480  df-er 8714  df-ni 10879  df-pli 10880  df-mi 10881  df-lti 10882  df-plpq 10915  df-mpq 10916  df-ltpq 10917  df-enq 10918  df-nq 10919  df-erq 10920  df-plq 10921  df-mq 10922  df-1nq 10923  df-rq 10924  df-ltnq 10925
This theorem is referenced by:  ltbtwnnq  10985  nqpr  11021  reclem2pr  11055
  Copyright terms: Public domain W3C validator