![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsmallnq | Structured version Visualization version GIF version |
Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nsmallnq | ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfnq 10967 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴) | |
2 | eleq1a 2828 | . . . . 5 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 +Q 𝑥) ∈ Q)) | |
3 | addnqf 10939 | . . . . . . . 8 ⊢ +Q :(Q × Q)⟶Q | |
4 | 3 | fdmi 6726 | . . . . . . 7 ⊢ dom +Q = (Q × Q) |
5 | 0nnq 10915 | . . . . . . 7 ⊢ ¬ ∅ ∈ Q | |
6 | 4, 5 | ndmovrcl 7589 | . . . . . 6 ⊢ ((𝑥 +Q 𝑥) ∈ Q → (𝑥 ∈ Q ∧ 𝑥 ∈ Q)) |
7 | ltaddnq 10965 | . . . . . 6 ⊢ ((𝑥 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑥)) | |
8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑥 +Q 𝑥) ∈ Q → 𝑥 <Q (𝑥 +Q 𝑥)) |
9 | 2, 8 | syl6 35 | . . . 4 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → 𝑥 <Q (𝑥 +Q 𝑥))) |
10 | breq2 5151 | . . . 4 ⊢ ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑥) ↔ 𝑥 <Q 𝐴)) | |
11 | 9, 10 | mpbidi 240 | . . 3 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → 𝑥 <Q 𝐴)) |
12 | 11 | eximdv 1920 | . 2 ⊢ (𝐴 ∈ Q → (∃𝑥(𝑥 +Q 𝑥) = 𝐴 → ∃𝑥 𝑥 <Q 𝐴)) |
13 | 1, 12 | mpd 15 | 1 ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 class class class wbr 5147 × cxp 5673 (class class class)co 7405 Qcnq 10843 +Q cplq 10846 <Q cltq 10849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 |
This theorem is referenced by: ltbtwnnq 10969 nqpr 11005 reclem2pr 11039 |
Copyright terms: Public domain | W3C validator |