| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsmallnq | Structured version Visualization version GIF version | ||
| Description: The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nsmallnq | ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | halfnq 10983 | . 2 ⊢ (𝐴 ∈ Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴) | |
| 2 | eleq1a 2828 | . . . . 5 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 +Q 𝑥) ∈ Q)) | |
| 3 | addnqf 10955 | . . . . . . . 8 ⊢ +Q :(Q × Q)⟶Q | |
| 4 | 3 | fdmi 6714 | . . . . . . 7 ⊢ dom +Q = (Q × Q) |
| 5 | 0nnq 10931 | . . . . . . 7 ⊢ ¬ ∅ ∈ Q | |
| 6 | 4, 5 | ndmovrcl 7588 | . . . . . 6 ⊢ ((𝑥 +Q 𝑥) ∈ Q → (𝑥 ∈ Q ∧ 𝑥 ∈ Q)) |
| 7 | ltaddnq 10981 | . . . . . 6 ⊢ ((𝑥 ∈ Q ∧ 𝑥 ∈ Q) → 𝑥 <Q (𝑥 +Q 𝑥)) | |
| 8 | 6, 7 | syl 17 | . . . . 5 ⊢ ((𝑥 +Q 𝑥) ∈ Q → 𝑥 <Q (𝑥 +Q 𝑥)) |
| 9 | 2, 8 | syl6 35 | . . . 4 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → 𝑥 <Q (𝑥 +Q 𝑥))) |
| 10 | breq2 5121 | . . . 4 ⊢ ((𝑥 +Q 𝑥) = 𝐴 → (𝑥 <Q (𝑥 +Q 𝑥) ↔ 𝑥 <Q 𝐴)) | |
| 11 | 9, 10 | mpbidi 241 | . . 3 ⊢ (𝐴 ∈ Q → ((𝑥 +Q 𝑥) = 𝐴 → 𝑥 <Q 𝐴)) |
| 12 | 11 | eximdv 1916 | . 2 ⊢ (𝐴 ∈ Q → (∃𝑥(𝑥 +Q 𝑥) = 𝐴 → ∃𝑥 𝑥 <Q 𝐴)) |
| 13 | 1, 12 | mpd 15 | 1 ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 class class class wbr 5117 × cxp 5650 (class class class)co 7400 Qcnq 10859 +Q cplq 10862 <Q cltq 10865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-oadd 8479 df-omul 8480 df-er 8714 df-ni 10879 df-pli 10880 df-mi 10881 df-lti 10882 df-plpq 10915 df-mpq 10916 df-ltpq 10917 df-enq 10918 df-nq 10919 df-erq 10920 df-plq 10921 df-mq 10922 df-1nq 10923 df-rq 10924 df-ltnq 10925 |
| This theorem is referenced by: ltbtwnnq 10985 nqpr 11021 reclem2pr 11055 |
| Copyright terms: Public domain | W3C validator |