| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setis | Structured version Visualization version GIF version | ||
| Description: Version of setrec2 49688 expressed as an induction schema. This theorem is a generalization of tfis3 7837. (Contributed by Emmett Weisz, 27-Feb-2022.) |
| Ref | Expression |
|---|---|
| setis.1 | ⊢ 𝐵 = setrecs(𝐹) |
| setis.2 | ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) |
| setis.3 | ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
| Ref | Expression |
|---|---|
| setis | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setis.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
| 2 | setis.3 | . . . . 5 ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) | |
| 3 | ssabral 4031 | . . . . . . 7 ⊢ (𝑎 ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ 𝑎 𝜓) | |
| 4 | ssabral 4031 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ (𝐹‘𝑎)𝜓) | |
| 5 | 3, 4 | imbi12i 350 | . . . . . 6 ⊢ ((𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ (∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
| 6 | 5 | albii 1819 | . . . . 5 ⊢ (∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
| 7 | 2, 6 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓})) |
| 8 | 1, 7 | setrec2v 49689 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ {𝑏 ∣ 𝜓}) |
| 9 | 8 | sseld 3948 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑏 ∣ 𝜓})) |
| 10 | setis.2 | . . 3 ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 11 | 10 | elabg 3646 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑏 ∣ 𝜓} ↔ 𝜒)) |
| 12 | 9, 11 | mpbidi 241 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ⊆ wss 3917 ‘cfv 6514 setrecscsetrecs 49676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-setrecs 49677 |
| This theorem is referenced by: pgindnf 49709 |
| Copyright terms: Public domain | W3C validator |