![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setis | Structured version Visualization version GIF version |
Description: Version of setrec2 49051 expressed as an induction schema. This theorem is a generalization of tfis3 7886. (Contributed by Emmett Weisz, 27-Feb-2022.) |
Ref | Expression |
---|---|
setis.1 | ⊢ 𝐵 = setrecs(𝐹) |
setis.2 | ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) |
setis.3 | ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
Ref | Expression |
---|---|
setis | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setis.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
2 | setis.3 | . . . . 5 ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) | |
3 | ssabral 4078 | . . . . . . 7 ⊢ (𝑎 ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ 𝑎 𝜓) | |
4 | ssabral 4078 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ (𝐹‘𝑎)𝜓) | |
5 | 3, 4 | imbi12i 350 | . . . . . 6 ⊢ ((𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ (∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
6 | 5 | albii 1818 | . . . . 5 ⊢ (∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
7 | 2, 6 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓})) |
8 | 1, 7 | setrec2v 49052 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ {𝑏 ∣ 𝜓}) |
9 | 8 | sseld 3997 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑏 ∣ 𝜓})) |
10 | setis.2 | . . 3 ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) | |
11 | 10 | elabg 3680 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑏 ∣ 𝜓} ↔ 𝜒)) |
12 | 9, 11 | mpbidi 241 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2714 ∀wral 3061 ⊆ wss 3966 ‘cfv 6569 setrecscsetrecs 49039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-setrecs 49040 |
This theorem is referenced by: pgindnf 49072 |
Copyright terms: Public domain | W3C validator |