![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setis | Structured version Visualization version GIF version |
Description: Version of setrec2 47693 expressed as an induction schema. This theorem is a generalization of tfis3 7843. (Contributed by Emmett Weisz, 27-Feb-2022.) |
Ref | Expression |
---|---|
setis.1 | ⊢ 𝐵 = setrecs(𝐹) |
setis.2 | ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) |
setis.3 | ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
Ref | Expression |
---|---|
setis | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setis.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
2 | setis.3 | . . . . 5 ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) | |
3 | ssabral 4058 | . . . . . . 7 ⊢ (𝑎 ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ 𝑎 𝜓) | |
4 | ssabral 4058 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ (𝐹‘𝑎)𝜓) | |
5 | 3, 4 | imbi12i 350 | . . . . . 6 ⊢ ((𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ (∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
6 | 5 | albii 1821 | . . . . 5 ⊢ (∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
7 | 2, 6 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓})) |
8 | 1, 7 | setrec2v 47694 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ {𝑏 ∣ 𝜓}) |
9 | 8 | sseld 3980 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑏 ∣ 𝜓})) |
10 | setis.2 | . . 3 ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) | |
11 | 10 | elabg 3665 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑏 ∣ 𝜓} ↔ 𝜒)) |
12 | 9, 11 | mpbidi 240 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ⊆ wss 3947 ‘cfv 6540 setrecscsetrecs 47681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-setrecs 47682 |
This theorem is referenced by: pgindnf 47714 |
Copyright terms: Public domain | W3C validator |