![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setis | Structured version Visualization version GIF version |
Description: Version of setrec2 48787 expressed as an induction schema. This theorem is a generalization of tfis3 7895. (Contributed by Emmett Weisz, 27-Feb-2022.) |
Ref | Expression |
---|---|
setis.1 | ⊢ 𝐵 = setrecs(𝐹) |
setis.2 | ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) |
setis.3 | ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
Ref | Expression |
---|---|
setis | ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setis.1 | . . . 4 ⊢ 𝐵 = setrecs(𝐹) | |
2 | setis.3 | . . . . 5 ⊢ (𝜑 → ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) | |
3 | ssabral 4088 | . . . . . . 7 ⊢ (𝑎 ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ 𝑎 𝜓) | |
4 | ssabral 4088 | . . . . . . 7 ⊢ ((𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓} ↔ ∀𝑏 ∈ (𝐹‘𝑎)𝜓) | |
5 | 3, 4 | imbi12i 350 | . . . . . 6 ⊢ ((𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ (∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
6 | 5 | albii 1817 | . . . . 5 ⊢ (∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓}) ↔ ∀𝑎(∀𝑏 ∈ 𝑎 𝜓 → ∀𝑏 ∈ (𝐹‘𝑎)𝜓)) |
7 | 2, 6 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏 ∣ 𝜓} → (𝐹‘𝑎) ⊆ {𝑏 ∣ 𝜓})) |
8 | 1, 7 | setrec2v 48788 | . . 3 ⊢ (𝜑 → 𝐵 ⊆ {𝑏 ∣ 𝜓}) |
9 | 8 | sseld 4007 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑏 ∣ 𝜓})) |
10 | setis.2 | . . 3 ⊢ (𝑏 = 𝐴 → (𝜓 ↔ 𝜒)) | |
11 | 10 | elabg 3690 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑏 ∣ 𝜓} ↔ 𝜒)) |
12 | 9, 11 | mpbidi 241 | 1 ⊢ (𝜑 → (𝐴 ∈ 𝐵 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 ‘cfv 6573 setrecscsetrecs 48775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-setrecs 48776 |
This theorem is referenced by: pgindnf 48808 |
Copyright terms: Public domain | W3C validator |