Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setis Structured version   Visualization version   GIF version

Theorem setis 49823
Description: Version of setrec2 49820 expressed as an induction schema. This theorem is a generalization of tfis3 7794. (Contributed by Emmett Weisz, 27-Feb-2022.)
Hypotheses
Ref Expression
setis.1 𝐵 = setrecs(𝐹)
setis.2 (𝑏 = 𝐴 → (𝜓𝜒))
setis.3 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
Assertion
Ref Expression
setis (𝜑 → (𝐴𝐵𝜒))
Distinct variable groups:   𝐹,𝑎,𝑏   𝜓,𝑎   𝜒,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑏)   𝜒(𝑎)   𝐴(𝑎)   𝐵(𝑎,𝑏)

Proof of Theorem setis
StepHypRef Expression
1 setis.1 . . . 4 𝐵 = setrecs(𝐹)
2 setis.3 . . . . 5 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
3 ssabral 4013 . . . . . . 7 (𝑎 ⊆ {𝑏𝜓} ↔ ∀𝑏𝑎 𝜓)
4 ssabral 4013 . . . . . . 7 ((𝐹𝑎) ⊆ {𝑏𝜓} ↔ ∀𝑏 ∈ (𝐹𝑎)𝜓)
53, 4imbi12i 350 . . . . . 6 ((𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ (∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
65albii 1820 . . . . 5 (∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
72, 6sylibr 234 . . . 4 (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}))
81, 7setrec2v 49821 . . 3 (𝜑𝐵 ⊆ {𝑏𝜓})
98sseld 3929 . 2 (𝜑 → (𝐴𝐵𝐴 ∈ {𝑏𝜓}))
10 setis.2 . . 3 (𝑏 = 𝐴 → (𝜓𝜒))
1110elabg 3628 . 2 (𝐴𝐵 → (𝐴 ∈ {𝑏𝜓} ↔ 𝜒))
129, 11mpbidi 241 1 (𝜑 → (𝐴𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wss 3898  cfv 6486  setrecscsetrecs 49808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fv 6494  df-setrecs 49809
This theorem is referenced by:  pgindnf  49841
  Copyright terms: Public domain W3C validator