Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setis Structured version   Visualization version   GIF version

Theorem setis 49677
Description: Version of setrec2 49674 expressed as an induction schema. This theorem is a generalization of tfis3 7836. (Contributed by Emmett Weisz, 27-Feb-2022.)
Hypotheses
Ref Expression
setis.1 𝐵 = setrecs(𝐹)
setis.2 (𝑏 = 𝐴 → (𝜓𝜒))
setis.3 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
Assertion
Ref Expression
setis (𝜑 → (𝐴𝐵𝜒))
Distinct variable groups:   𝐹,𝑎,𝑏   𝜓,𝑎   𝜒,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑏)   𝜒(𝑎)   𝐴(𝑎)   𝐵(𝑎,𝑏)

Proof of Theorem setis
StepHypRef Expression
1 setis.1 . . . 4 𝐵 = setrecs(𝐹)
2 setis.3 . . . . 5 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
3 ssabral 4030 . . . . . . 7 (𝑎 ⊆ {𝑏𝜓} ↔ ∀𝑏𝑎 𝜓)
4 ssabral 4030 . . . . . . 7 ((𝐹𝑎) ⊆ {𝑏𝜓} ↔ ∀𝑏 ∈ (𝐹𝑎)𝜓)
53, 4imbi12i 350 . . . . . 6 ((𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ (∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
65albii 1819 . . . . 5 (∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
72, 6sylibr 234 . . . 4 (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}))
81, 7setrec2v 49675 . . 3 (𝜑𝐵 ⊆ {𝑏𝜓})
98sseld 3947 . 2 (𝜑 → (𝐴𝐵𝐴 ∈ {𝑏𝜓}))
10 setis.2 . . 3 (𝑏 = 𝐴 → (𝜓𝜒))
1110elabg 3645 . 2 (𝐴𝐵 → (𝐴 ∈ {𝑏𝜓} ↔ 𝜒))
129, 11mpbidi 241 1 (𝜑 → (𝐴𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wss 3916  cfv 6513  setrecscsetrecs 49662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fv 6521  df-setrecs 49663
This theorem is referenced by:  pgindnf  49695
  Copyright terms: Public domain W3C validator