Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setis Structured version   Visualization version   GIF version

Theorem setis 48790
Description: Version of setrec2 48787 expressed as an induction schema. This theorem is a generalization of tfis3 7895. (Contributed by Emmett Weisz, 27-Feb-2022.)
Hypotheses
Ref Expression
setis.1 𝐵 = setrecs(𝐹)
setis.2 (𝑏 = 𝐴 → (𝜓𝜒))
setis.3 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
Assertion
Ref Expression
setis (𝜑 → (𝐴𝐵𝜒))
Distinct variable groups:   𝐹,𝑎,𝑏   𝜓,𝑎   𝜒,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝜓(𝑏)   𝜒(𝑎)   𝐴(𝑎)   𝐵(𝑎,𝑏)

Proof of Theorem setis
StepHypRef Expression
1 setis.1 . . . 4 𝐵 = setrecs(𝐹)
2 setis.3 . . . . 5 (𝜑 → ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
3 ssabral 4088 . . . . . . 7 (𝑎 ⊆ {𝑏𝜓} ↔ ∀𝑏𝑎 𝜓)
4 ssabral 4088 . . . . . . 7 ((𝐹𝑎) ⊆ {𝑏𝜓} ↔ ∀𝑏 ∈ (𝐹𝑎)𝜓)
53, 4imbi12i 350 . . . . . 6 ((𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ (∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
65albii 1817 . . . . 5 (∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}) ↔ ∀𝑎(∀𝑏𝑎 𝜓 → ∀𝑏 ∈ (𝐹𝑎)𝜓))
72, 6sylibr 234 . . . 4 (𝜑 → ∀𝑎(𝑎 ⊆ {𝑏𝜓} → (𝐹𝑎) ⊆ {𝑏𝜓}))
81, 7setrec2v 48788 . . 3 (𝜑𝐵 ⊆ {𝑏𝜓})
98sseld 4007 . 2 (𝜑 → (𝐴𝐵𝐴 ∈ {𝑏𝜓}))
10 setis.2 . . 3 (𝑏 = 𝐴 → (𝜓𝜒))
1110elabg 3690 . 2 (𝐴𝐵 → (𝐴 ∈ {𝑏𝜓} ↔ 𝜒))
129, 11mpbidi 241 1 (𝜑 → (𝐴𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wss 3976  cfv 6573  setrecscsetrecs 48775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fv 6581  df-setrecs 48776
This theorem is referenced by:  pgindnf  48808
  Copyright terms: Public domain W3C validator