Proof of Theorem ov3
Step | Hyp | Ref
| Expression |
1 | | ov3.1 |
. . 3
⊢ 𝑆 ∈ V |
2 | 1 | isseti 3447 |
. 2
⊢
∃𝑧 𝑧 = 𝑆 |
3 | | nfv 1917 |
. . 3
⊢
Ⅎ𝑧((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) |
4 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑧〈𝐴, 𝐵〉 |
5 | | ov3.3 |
. . . . . 6
⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
6 | | nfoprab3 7338 |
. . . . . 6
⊢
Ⅎ𝑧{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
7 | 5, 6 | nfcxfr 2905 |
. . . . 5
⊢
Ⅎ𝑧𝐹 |
8 | | nfcv 2907 |
. . . . 5
⊢
Ⅎ𝑧〈𝐶, 𝐷〉 |
9 | 4, 7, 8 | nfov 7305 |
. . . 4
⊢
Ⅎ𝑧(〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) |
10 | 9 | nfeq1 2922 |
. . 3
⊢
Ⅎ𝑧(〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆 |
11 | | ov3.2 |
. . . . . . 7
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → 𝑅 = 𝑆) |
12 | 11 | eqeq2d 2749 |
. . . . . 6
⊢ (((𝑤 = 𝐴 ∧ 𝑣 = 𝐵) ∧ (𝑢 = 𝐶 ∧ 𝑓 = 𝐷)) → (𝑧 = 𝑅 ↔ 𝑧 = 𝑆)) |
13 | 12 | copsex4g 5409 |
. . . . 5
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ 𝑧 = 𝑆)) |
14 | | opelxpi 5626 |
. . . . . 6
⊢ ((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) → 〈𝐴, 𝐵〉 ∈ (𝐻 × 𝐻)) |
15 | | opelxpi 5626 |
. . . . . 6
⊢ ((𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻) → 〈𝐶, 𝐷〉 ∈ (𝐻 × 𝐻)) |
16 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥〈𝐴, 𝐵〉 |
17 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦〈𝐴, 𝐵〉 |
18 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑦〈𝐶, 𝐷〉 |
19 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
20 | | nfoprab1 7336 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
21 | 5, 20 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝐹 |
22 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝑦 |
23 | 16, 21, 22 | nfov 7305 |
. . . . . . . . 9
⊢
Ⅎ𝑥(〈𝐴, 𝐵〉𝐹𝑦) |
24 | 23 | nfeq1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑥(〈𝐴, 𝐵〉𝐹𝑦) = 𝑧 |
25 | 19, 24 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑥(∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹𝑦) = 𝑧) |
26 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑦∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
27 | | nfoprab2 7337 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
28 | 5, 27 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐹 |
29 | 17, 28, 18 | nfov 7305 |
. . . . . . . . 9
⊢
Ⅎ𝑦(〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) |
30 | 29 | nfeq1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑦(〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧 |
31 | 26, 30 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑦(∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧) |
32 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑥 = 〈𝑤, 𝑣〉 ↔ 〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉)) |
33 | 32 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ↔ (〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉))) |
34 | 33 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))) |
35 | 34 | 4exbidv 1929 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))) |
36 | | oveq1 7282 |
. . . . . . . . 9
⊢ (𝑥 = 〈𝐴, 𝐵〉 → (𝑥𝐹𝑦) = (〈𝐴, 𝐵〉𝐹𝑦)) |
37 | 36 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((𝑥𝐹𝑦) = 𝑧 ↔ (〈𝐴, 𝐵〉𝐹𝑦) = 𝑧)) |
38 | 35, 37 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 〈𝐴, 𝐵〉 → ((∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (𝑥𝐹𝑦) = 𝑧) ↔ (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹𝑦) = 𝑧))) |
39 | | eqeq1 2742 |
. . . . . . . . . . 11
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (𝑦 = 〈𝑢, 𝑓〉 ↔ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉)) |
40 | 39 | anbi2d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ↔ (〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉))) |
41 | 40 | anbi1d 630 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))) |
42 | 41 | 4exbidv 1929 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))) |
43 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑦 = 〈𝐶, 𝐷〉 → (〈𝐴, 𝐵〉𝐹𝑦) = (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉)) |
44 | 43 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((〈𝐴, 𝐵〉𝐹𝑦) = 𝑧 ↔ (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧)) |
45 | 42, 44 | imbi12d 345 |
. . . . . . 7
⊢ (𝑦 = 〈𝐶, 𝐷〉 → ((∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹𝑦) = 𝑧) ↔ (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧))) |
46 | | moeq 3642 |
. . . . . . . . . . . 12
⊢
∃*𝑧 𝑧 = 𝑅 |
47 | 46 | mosubop 5425 |
. . . . . . . . . . 11
⊢
∃*𝑧∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅) |
48 | 47 | mosubop 5425 |
. . . . . . . . . 10
⊢
∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) |
49 | | anass 469 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
50 | 49 | 2exbii 1851 |
. . . . . . . . . . . . 13
⊢
(∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
51 | | 19.42vv 1961 |
. . . . . . . . . . . . 13
⊢
(∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
52 | 50, 51 | bitri 274 |
. . . . . . . . . . . 12
⊢
(∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
53 | 52 | 2exbii 1851 |
. . . . . . . . . . 11
⊢
(∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
54 | 53 | mobii 2548 |
. . . . . . . . . 10
⊢
(∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
55 | 48, 54 | mpbir 230 |
. . . . . . . . 9
⊢
∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
56 | 55 | a1i 11 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅)) |
57 | 56, 5 | ovidi 7416 |
. . . . . . 7
⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (𝑥𝐹𝑦) = 𝑧)) |
58 | 16, 17, 18, 25, 31, 38, 45, 57 | vtocl2gaf 3515 |
. . . . . 6
⊢
((〈𝐴, 𝐵〉 ∈ (𝐻 × 𝐻) ∧ 〈𝐶, 𝐷〉 ∈ (𝐻 × 𝐻)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧)) |
59 | 14, 15, 58 | syl2an 596 |
. . . . 5
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (∃𝑤∃𝑣∃𝑢∃𝑓((〈𝐴, 𝐵〉 = 〈𝑤, 𝑣〉 ∧ 〈𝐶, 𝐷〉 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧)) |
60 | 13, 59 | sylbird 259 |
. . . 4
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (𝑧 = 𝑆 → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧)) |
61 | | eqeq2 2750 |
. . . 4
⊢ (𝑧 = 𝑆 → ((〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑧 ↔ (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆)) |
62 | 60, 61 | mpbidi 240 |
. . 3
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (𝑧 = 𝑆 → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆)) |
63 | 3, 10, 62 | exlimd 2211 |
. 2
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (∃𝑧 𝑧 = 𝑆 → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆)) |
64 | 2, 63 | mpi 20 |
1
⊢ (((𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻) ∧ (𝐶 ∈ 𝐻 ∧ 𝐷 ∈ 𝐻)) → (〈𝐴, 𝐵〉𝐹〈𝐶, 𝐷〉) = 𝑆) |