MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem2 Structured version   Visualization version   GIF version

Theorem omeulem2 8059
Description: Lemma for omeu 8061: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omeulem2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))

Proof of Theorem omeulem2
StepHypRef Expression
1 simp3l 1194 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐷 ∈ On)
2 eloni 6076 . . . . . 6 (𝐷 ∈ On → Ord 𝐷)
3 ordsucss 7389 . . . . . 6 (Ord 𝐷 → (𝐵𝐷 → suc 𝐵𝐷))
41, 2, 33syl 18 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → suc 𝐵𝐷))
5 simp2l 1192 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐵 ∈ On)
6 suceloni 7384 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
75, 6syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → suc 𝐵 ∈ On)
8 simp1l 1190 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ∈ On)
9 simp1r 1191 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ≠ ∅)
10 on0eln0 6121 . . . . . . . 8 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
118, 10syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (∅ ∈ 𝐴𝐴 ≠ ∅))
129, 11mpbird 258 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ∅ ∈ 𝐴)
13 omword 8046 . . . . . 6 (((suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
147, 1, 8, 12, 13syl31anc 1366 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
154, 14sylibd 240 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
16 omcl 8012 . . . . . 6 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
178, 1, 16syl2anc 584 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐷) ∈ On)
18 simp3r 1195 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸𝐴)
19 onelon 6091 . . . . . 6 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
208, 18, 19syl2anc 584 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸 ∈ On)
21 oaword1 8028 . . . . . 6 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
22 sstr 3897 . . . . . . 7 (((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) ∧ (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
2322expcom 414 . . . . . 6 ((𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2421, 23syl 17 . . . . 5 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2517, 20, 24syl2anc 584 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2615, 25syld 47 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
27 simp2r 1193 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶𝐴)
28 onelon 6091 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
298, 27, 28syl2anc 584 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶 ∈ On)
30 omcl 8012 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
318, 5, 30syl2anc 584 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐵) ∈ On)
32 oaord 8023 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐴 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴)))
3332biimpa 477 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) ∧ 𝐶𝐴) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
3429, 8, 31, 27, 33syl31anc 1366 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
35 omsuc 8002 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
368, 5, 35syl2anc 584 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
3734, 36eleqtrrd 2886 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵))
38 ssel 3883 . . 3 ((𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
3926, 37, 38syl6ci 71 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
40 simpr 485 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → 𝐶𝐸)
41 oaord 8023 . . . . 5 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐸 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
4240, 41syl5ib 245 . . . 4 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
43 oveq2 7024 . . . . . . 7 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
4443oveq1d 7031 . . . . . 6 (𝐵 = 𝐷 → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4544adantr 481 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4645eleq2d 2868 . . . 4 ((𝐵 = 𝐷𝐶𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸) ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4742, 46mpbidi 242 . . 3 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4829, 20, 31, 47syl3anc 1364 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4939, 48jaod 854 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  wss 3859  c0 4211  Ord word 6065  Oncon0 6066  suc csuc 6068  (class class class)co 7016   +o coa 7950   ·o comu 7951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-oadd 7957  df-omul 7958
This theorem is referenced by:  omopth2  8060
  Copyright terms: Public domain W3C validator