MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem2 Structured version   Visualization version   GIF version

Theorem omeulem2 8289
Description: Lemma for omeu 8291: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omeulem2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))

Proof of Theorem omeulem2
StepHypRef Expression
1 simp3l 1203 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐷 ∈ On)
2 eloni 6201 . . . . . 6 (𝐷 ∈ On → Ord 𝐷)
3 ordsucss 7575 . . . . . 6 (Ord 𝐷 → (𝐵𝐷 → suc 𝐵𝐷))
41, 2, 33syl 18 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → suc 𝐵𝐷))
5 simp2l 1201 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐵 ∈ On)
6 suceloni 7570 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
75, 6syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → suc 𝐵 ∈ On)
8 simp1l 1199 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ∈ On)
9 simp1r 1200 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ≠ ∅)
10 on0eln0 6246 . . . . . . . 8 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
118, 10syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (∅ ∈ 𝐴𝐴 ≠ ∅))
129, 11mpbird 260 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ∅ ∈ 𝐴)
13 omword 8276 . . . . . 6 (((suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
147, 1, 8, 12, 13syl31anc 1375 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (suc 𝐵𝐷 ↔ (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
154, 14sylibd 242 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷)))
16 omcl 8241 . . . . . 6 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·o 𝐷) ∈ On)
178, 1, 16syl2anc 587 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐷) ∈ On)
18 simp3r 1204 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸𝐴)
19 onelon 6216 . . . . . 6 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
208, 18, 19syl2anc 587 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸 ∈ On)
21 oaword1 8258 . . . . . 6 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
22 sstr 3895 . . . . . . 7 (((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) ∧ (𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸))
2322expcom 417 . . . . . 6 ((𝐴 ·o 𝐷) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2421, 23syl 17 . . . . 5 (((𝐴 ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2517, 20, 24syl2anc 587 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o suc 𝐵) ⊆ (𝐴 ·o 𝐷) → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
2615, 25syld 47 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸)))
27 simp2r 1202 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶𝐴)
28 onelon 6216 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
298, 27, 28syl2anc 587 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶 ∈ On)
30 omcl 8241 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
318, 5, 30syl2anc 587 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o 𝐵) ∈ On)
32 oaord 8253 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐴 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴)))
3332biimpa 480 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) ∧ 𝐶𝐴) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
3429, 8, 31, 27, 33syl31anc 1375 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐴))
35 omsuc 8231 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
368, 5, 35syl2anc 587 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
3734, 36eleqtrrd 2834 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵))
38 ssel 3880 . . 3 ((𝐴 ·o suc 𝐵) ⊆ ((𝐴 ·o 𝐷) +o 𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ (𝐴 ·o suc 𝐵) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
3926, 37, 38syl6ci 71 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
40 simpr 488 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → 𝐶𝐸)
41 oaord 8253 . . . . 5 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → (𝐶𝐸 ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
4240, 41syl5ib 247 . . . 4 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸)))
43 oveq2 7199 . . . . . . 7 (𝐵 = 𝐷 → (𝐴 ·o 𝐵) = (𝐴 ·o 𝐷))
4443oveq1d 7206 . . . . . 6 (𝐵 = 𝐷 → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4544adantr 484 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐸) = ((𝐴 ·o 𝐷) +o 𝐸))
4645eleq2d 2816 . . . 4 ((𝐵 = 𝐷𝐶𝐸) → (((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐵) +o 𝐸) ↔ ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4742, 46mpbidi 244 . . 3 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·o 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4829, 20, 31, 47syl3anc 1373 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
4939, 48jaod 859 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·o 𝐵) +o 𝐶) ∈ ((𝐴 ·o 𝐷) +o 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wss 3853  c0 4223  Ord word 6190  Oncon0 6191  suc csuc 6193  (class class class)co 7191   +o coa 8177   ·o comu 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-oadd 8184  df-omul 8185
This theorem is referenced by:  omopth2  8290
  Copyright terms: Public domain W3C validator