MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omeulem2 Structured version   Visualization version   GIF version

Theorem omeulem2 7872
Description: Lemma for omeu 7874: uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013.) (Revised by Mario Carneiro, 29-May-2015.)
Assertion
Ref Expression
omeulem2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))

Proof of Theorem omeulem2
StepHypRef Expression
1 simp3l 1258 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐷 ∈ On)
2 eloni 5920 . . . . . 6 (𝐷 ∈ On → Ord 𝐷)
3 ordsucss 7220 . . . . . 6 (Ord 𝐷 → (𝐵𝐷 → suc 𝐵𝐷))
41, 2, 33syl 18 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → suc 𝐵𝐷))
5 simp2l 1256 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐵 ∈ On)
6 suceloni 7215 . . . . . . 7 (𝐵 ∈ On → suc 𝐵 ∈ On)
75, 6syl 17 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → suc 𝐵 ∈ On)
8 simp1l 1254 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ∈ On)
9 simp1r 1255 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐴 ≠ ∅)
10 on0eln0 5965 . . . . . . . 8 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
118, 10syl 17 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (∅ ∈ 𝐴𝐴 ≠ ∅))
129, 11mpbird 248 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ∅ ∈ 𝐴)
13 omword 7859 . . . . . 6 (((suc 𝐵 ∈ On ∧ 𝐷 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (suc 𝐵𝐷 ↔ (𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷)))
147, 1, 8, 12, 13syl31anc 1492 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (suc 𝐵𝐷 ↔ (𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷)))
154, 14sylibd 230 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷)))
16 omcl 7825 . . . . . 6 ((𝐴 ∈ On ∧ 𝐷 ∈ On) → (𝐴 ·𝑜 𝐷) ∈ On)
178, 1, 16syl2anc 579 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·𝑜 𝐷) ∈ On)
18 simp3r 1259 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸𝐴)
19 onelon 5935 . . . . . 6 ((𝐴 ∈ On ∧ 𝐸𝐴) → 𝐸 ∈ On)
208, 18, 19syl2anc 579 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐸 ∈ On)
21 oaword1 7841 . . . . . 6 (((𝐴 ·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → (𝐴 ·𝑜 𝐷) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
22 sstr 3771 . . . . . . 7 (((𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷) ∧ (𝐴 ·𝑜 𝐷) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)) → (𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
2322expcom 402 . . . . . 6 ((𝐴 ·𝑜 𝐷) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) → ((𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷) → (𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2421, 23syl 17 . . . . 5 (((𝐴 ·𝑜 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷) → (𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2517, 20, 24syl2anc 579 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·𝑜 suc 𝐵) ⊆ (𝐴 ·𝑜 𝐷) → (𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
2615, 25syld 47 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → (𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
27 simp2r 1257 . . . . . 6 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶𝐴)
28 onelon 5935 . . . . . 6 ((𝐴 ∈ On ∧ 𝐶𝐴) → 𝐶 ∈ On)
298, 27, 28syl2anc 579 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → 𝐶 ∈ On)
30 omcl 7825 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
318, 5, 30syl2anc 579 . . . . 5 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·𝑜 𝐵) ∈ On)
32 oaord 7836 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (𝐶𝐴 ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴)))
3332biimpa 468 . . . . 5 (((𝐶 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) ∧ 𝐶𝐴) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
3429, 8, 31, 27, 33syl31anc 1492 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
35 omsuc 7815 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
368, 5, 35syl2anc 579 . . . 4 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐴 ·𝑜 suc 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐴))
3734, 36eleqtrrd 2847 . . 3 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ (𝐴 ·𝑜 suc 𝐵))
38 ssel 3757 . . 3 ((𝐴 ·𝑜 suc 𝐵) ⊆ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ (𝐴 ·𝑜 suc 𝐵) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
3926, 37, 38syl6ci 71 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → (𝐵𝐷 → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
40 simpr 477 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → 𝐶𝐸)
41 oaord 7836 . . . . 5 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (𝐶𝐸 ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐸)))
4240, 41syl5ib 235 . . . 4 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐸)))
43 oveq2 6854 . . . . . . 7 (𝐵 = 𝐷 → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 𝐷))
4443oveq1d 6861 . . . . . 6 (𝐵 = 𝐷 → ((𝐴 ·𝑜 𝐵) +𝑜 𝐸) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
4544adantr 472 . . . . 5 ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐸) = ((𝐴 ·𝑜 𝐷) +𝑜 𝐸))
4645eleq2d 2830 . . . 4 ((𝐵 = 𝐷𝐶𝐸) → (((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 𝐸) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
4742, 46mpbidi 232 . . 3 ((𝐶 ∈ On ∧ 𝐸 ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
4829, 20, 31, 47syl3anc 1490 . 2 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵 = 𝐷𝐶𝐸) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
4939, 48jaod 885 1 (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (𝐵 ∈ On ∧ 𝐶𝐴) ∧ (𝐷 ∈ On ∧ 𝐸𝐴)) → ((𝐵𝐷 ∨ (𝐵 = 𝐷𝐶𝐸)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝐶) ∈ ((𝐴 ·𝑜 𝐷) +𝑜 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wss 3734  c0 4081  Ord word 5909  Oncon0 5910  suc csuc 5912  (class class class)co 6846   +𝑜 coa 7765   ·𝑜 comu 7766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-oadd 7772  df-omul 7773
This theorem is referenced by:  omopth2  7873
  Copyright terms: Public domain W3C validator