Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refressn Structured version   Visualization version   GIF version

Theorem refressn 38618
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38617) is reflexive, see also refrelressn 38689. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
refressn (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem refressn
StepHypRef Expression
1 elin 3914 . . . . . 6 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) ↔ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})))
2 eldmressnALTV 38384 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅)))
32elv 3442 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅))
43simplbi 497 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝑥 = 𝐴)
54adantr 480 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
61, 5sylbi 217 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴))
8 elrnressn 38385 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
98elvd 3443 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
109biimpd 229 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) → 𝐴𝑅𝑥))
1110adantld 490 . . . . . 6 (𝐴𝑉 → ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
121, 11biimtrid 242 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
134eqcomd 2739 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝐴 = 𝑥)
1413breq1d 5105 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1514adantr 480 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
161, 15sylbi 217 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1712, 16mpbidi 241 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥𝑅𝑥))
187, 17jcad 512 . . 3 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝑥 = 𝐴𝑥𝑅𝑥)))
19 brressn 38616 . . . 4 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥)))
2019el2v 3444 . . 3 (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥))
2118, 20imbitrrdi 252 . 2 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥(𝑅 ↾ {𝐴})𝑥))
2221ralrimiv 3124 1 (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cin 3897  {csn 4577   class class class wbr 5095  dom cdm 5621  ran crn 5622  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633
This theorem is referenced by:  refrelressn  38689
  Copyright terms: Public domain W3C validator