Proof of Theorem refressn
Step | Hyp | Ref
| Expression |
1 | | elin 3908 |
. . . . . 6
⊢ (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) ↔ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴}))) |
2 | | eldmressnALTV 36482 |
. . . . . . . . 9
⊢ (𝑥 ∈ V → (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅))) |
3 | 2 | elv 3443 |
. . . . . . . 8
⊢ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴 ∧ 𝐴 ∈ dom 𝑅)) |
4 | 3 | simplbi 499 |
. . . . . . 7
⊢ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝑥 = 𝐴) |
5 | 4 | adantr 482 |
. . . . . 6
⊢ ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴) |
6 | 1, 5 | sylbi 216 |
. . . . 5
⊢ (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴) |
7 | 6 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)) |
8 | | elrnressn 36483 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ V) → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥)) |
9 | 8 | elvd 3444 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥)) |
10 | 9 | biimpd 228 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) → 𝐴𝑅𝑥)) |
11 | 10 | adantld 492 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥)) |
12 | 1, 11 | biimtrid 241 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥)) |
13 | 4 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝐴 = 𝑥) |
14 | 13 | breq1d 5091 |
. . . . . . 7
⊢ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → (𝐴𝑅𝑥 ↔ 𝑥𝑅𝑥)) |
15 | 14 | adantr 482 |
. . . . . 6
⊢ ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥 ↔ 𝑥𝑅𝑥)) |
16 | 1, 15 | sylbi 216 |
. . . . 5
⊢ (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥 ↔ 𝑥𝑅𝑥)) |
17 | 12, 16 | mpbidi 240 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥𝑅𝑥)) |
18 | 7, 17 | jcad 514 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝑥 = 𝐴 ∧ 𝑥𝑅𝑥))) |
19 | | brressn 36655 |
. . . 4
⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑥))) |
20 | 19 | el2v 3445 |
. . 3
⊢ (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴 ∧ 𝑥𝑅𝑥)) |
21 | 18, 20 | syl6ibr 252 |
. 2
⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥(𝑅 ↾ {𝐴})𝑥)) |
22 | 21 | ralrimiv 3138 |
1
⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥) |