Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refressn Structured version   Visualization version   GIF version

Theorem refressn 37313
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 37312) is reflexive, see also refrelressn 37394. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
refressn (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem refressn
StepHypRef Expression
1 elin 3965 . . . . . 6 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) ↔ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})))
2 eldmressnALTV 37140 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅)))
32elv 3481 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅))
43simplbi 499 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝑥 = 𝐴)
54adantr 482 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
61, 5sylbi 216 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴))
8 elrnressn 37141 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
98elvd 3482 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
109biimpd 228 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) → 𝐴𝑅𝑥))
1110adantld 492 . . . . . 6 (𝐴𝑉 → ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
121, 11biimtrid 241 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
134eqcomd 2739 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝐴 = 𝑥)
1413breq1d 5159 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1514adantr 482 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
161, 15sylbi 216 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1712, 16mpbidi 240 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥𝑅𝑥))
187, 17jcad 514 . . 3 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝑥 = 𝐴𝑥𝑅𝑥)))
19 brressn 37311 . . . 4 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥)))
2019el2v 3483 . . 3 (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥))
2118, 20syl6ibr 252 . 2 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥(𝑅 ↾ {𝐴})𝑥))
2221ralrimiv 3146 1 (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cin 3948  {csn 4629   class class class wbr 5149  dom cdm 5677  ran crn 5678  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-xp 5683  df-cnv 5685  df-dm 5687  df-rn 5688  df-res 5689
This theorem is referenced by:  refrelressn  37394
  Copyright terms: Public domain W3C validator