Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refressn Structured version   Visualization version   GIF version

Theorem refressn 38441
Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 38440) is reflexive, see also refrelressn 38522. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
refressn (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hint:   𝑅(𝑥)

Proof of Theorem refressn
StepHypRef Expression
1 elin 3933 . . . . . 6 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) ↔ (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})))
2 eldmressnALTV 38268 . . . . . . . . 9 (𝑥 ∈ V → (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅)))
32elv 3455 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) ↔ (𝑥 = 𝐴𝐴 ∈ dom 𝑅))
43simplbi 497 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝑥 = 𝐴)
54adantr 480 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
61, 5sylbi 217 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥 = 𝐴))
8 elrnressn 38269 . . . . . . . . 9 ((𝐴𝑉𝑥 ∈ V) → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
98elvd 3456 . . . . . . . 8 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝑥))
109biimpd 229 . . . . . . 7 (𝐴𝑉 → (𝑥 ∈ ran (𝑅 ↾ {𝐴}) → 𝐴𝑅𝑥))
1110adantld 490 . . . . . 6 (𝐴𝑉 → ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
121, 11biimtrid 242 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝐴𝑅𝑥))
134eqcomd 2736 . . . . . . . 8 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → 𝐴 = 𝑥)
1413breq1d 5120 . . . . . . 7 (𝑥 ∈ dom (𝑅 ↾ {𝐴}) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1514adantr 480 . . . . . 6 ((𝑥 ∈ dom (𝑅 ↾ {𝐴}) ∧ 𝑥 ∈ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
161, 15sylbi 217 . . . . 5 (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝐴𝑅𝑥𝑥𝑅𝑥))
1712, 16mpbidi 241 . . . 4 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥𝑅𝑥))
187, 17jcad 512 . . 3 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → (𝑥 = 𝐴𝑥𝑅𝑥)))
19 brressn 38439 . . . 4 ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥)))
2019el2v 3457 . . 3 (𝑥(𝑅 ↾ {𝐴})𝑥 ↔ (𝑥 = 𝐴𝑥𝑅𝑥))
2118, 20imbitrrdi 252 . 2 (𝐴𝑉 → (𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴})) → 𝑥(𝑅 ↾ {𝐴})𝑥))
2221ralrimiv 3125 1 (𝐴𝑉 → ∀𝑥 ∈ (dom (𝑅 ↾ {𝐴}) ∩ ran (𝑅 ↾ {𝐴}))𝑥(𝑅 ↾ {𝐴})𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  cin 3916  {csn 4592   class class class wbr 5110  dom cdm 5641  ran crn 5642  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653
This theorem is referenced by:  refrelressn  38522
  Copyright terms: Public domain W3C validator