MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntrsumbnd Structured version   Visualization version   GIF version

Theorem pntrsumbnd 27475
Description: A bound on a sum over 𝑅. Equation 10.1.16 of [Shapiro], p. 403. (Contributed by Mario Carneiro, 25-May-2016.)
Hypothesis
Ref Expression
pntrval.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
Assertion
Ref Expression
pntrsumbnd 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Distinct variable groups:   𝑚,𝑎,𝑛   𝑚,𝑐,𝑛,𝑅
Allowed substitution hint:   𝑅(𝑎)

Proof of Theorem pntrsumbnd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssidd 3959 . . . 4 (⊤ → ℝ ⊆ ℝ)
2 1red 11116 . . . 4 (⊤ → 1 ∈ ℝ)
3 fzfid 13880 . . . . 5 ((⊤ ∧ 𝑚 ∈ ℝ) → (1...(⌊‘𝑚)) ∈ Fin)
4 elfznn 13456 . . . . . . 7 (𝑛 ∈ (1...(⌊‘𝑚)) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → 𝑛 ∈ ℕ)
6 nnrp 12905 . . . . . . . . 9 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
7 pntrval.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
87pntrf 27472 . . . . . . . . . 10 𝑅:ℝ+⟶ℝ
98ffvelcdmi 7017 . . . . . . . . 9 (𝑛 ∈ ℝ+ → (𝑅𝑛) ∈ ℝ)
106, 9syl 17 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑅𝑛) ∈ ℝ)
11 peano2nn 12140 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
12 nnmulcl 12152 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ ℕ) → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1311, 12mpdan 687 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 · (𝑛 + 1)) ∈ ℕ)
1410, 13nndivred 12182 . . . . . . 7 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℝ)
1514recnd 11143 . . . . . 6 (𝑛 ∈ ℕ → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
165, 15syl 17 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
173, 16fsumcl 15640 . . . 4 ((⊤ ∧ 𝑚 ∈ ℝ) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
187pntrsumo1 27474 . . . . 5 (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1)
1918a1i 11 . . . 4 (⊤ → (𝑚 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ 𝑂(1))
20 fzfid 13880 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
21 elfznn 13456 . . . . . . . 8 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
2221adantl 481 . . . . . . 7 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
2322, 15syl 17 . . . . . 6 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2423abscld 15346 . . . . 5 (((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2520, 24fsumrecl 15641 . . . 4 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
2617adantr 480 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
2726abscld 15346 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
28 fzfid 13880 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ∈ Fin)
2916adantlr 715 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3029abscld 15346 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑚))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3128, 30fsumrecl 15641 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3225ad2ant2r 747 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3328, 29fsumabs 15708 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
34 fzfid 13880 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin)
3521adantl 481 . . . . . . . 8 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
3635, 15syl 17 . . . . . . 7 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅𝑛) / (𝑛 · (𝑛 + 1))) ∈ ℂ)
3736abscld 15346 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ∈ ℝ)
3836absge0d 15354 . . . . . 6 ((((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
39 simplr 768 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 ∈ ℝ)
40 simprll 778 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑥 ∈ ℝ)
41 simprr 772 . . . . . . . . 9 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚 < 𝑥)
4239, 40, 41ltled 11264 . . . . . . . 8 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → 𝑚𝑥)
43 flword2 13717 . . . . . . . 8 ((𝑚 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑚𝑥) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
4439, 40, 42, 43syl3anc 1373 . . . . . . 7 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)))
45 fzss2 13467 . . . . . . 7 ((⌊‘𝑥) ∈ (ℤ‘(⌊‘𝑚)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4644, 45syl 17 . . . . . 6 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (1...(⌊‘𝑚)) ⊆ (1...(⌊‘𝑥)))
4734, 37, 38, 46fsumless 15703 . . . . 5 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑚))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
4827, 31, 32, 33, 47letrd 11273 . . . 4 (((⊤ ∧ 𝑚 ∈ ℝ) ∧ ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) ∧ 𝑚 < 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
491, 2, 17, 19, 25, 48o1bddrp 15449 . . 3 (⊤ → ∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
5049mptru 1547 . 2 𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
51 zre 12475 . . . . . 6 (𝑚 ∈ ℤ → 𝑚 ∈ ℝ)
5251imim1i 63 . . . . 5 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
53 flid 13712 . . . . . . . . 9 (𝑚 ∈ ℤ → (⌊‘𝑚) = 𝑚)
5453oveq2d 7365 . . . . . . . 8 (𝑚 ∈ ℤ → (1...(⌊‘𝑚)) = (1...𝑚))
5554sumeq1d 15607 . . . . . . 7 (𝑚 ∈ ℤ → Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1))) = Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1))))
5655fveq2d 6826 . . . . . 6 (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) = (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))))
5756breq1d 5102 . . . . 5 (𝑚 ∈ ℤ → ((abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 ↔ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
5852, 57mpbidi 241 . . . 4 ((𝑚 ∈ ℝ → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐) → (𝑚 ∈ ℤ → (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐))
5958ralimi2 3061 . . 3 (∀𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∀𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6059reximi 3067 . 2 (∃𝑐 ∈ ℝ+𝑚 ∈ ℝ (abs‘Σ𝑛 ∈ (1...(⌊‘𝑚))((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐 → ∃𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐)
6150, 60ax-mp 5 1 𝑐 ∈ ℝ+𝑚 ∈ ℤ (abs‘Σ𝑛 ∈ (1...𝑚)((𝑅𝑛) / (𝑛 · (𝑛 + 1)))) ≤ 𝑐
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109  wral 3044  wrex 3053  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cuz 12735  +crp 12893  ...cfz 13410  cfl 13694  abscabs 15141  𝑂(1)co1 15393  Σcsu 15593  ψcchp 27001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-o1 15397  df-lo1 15398  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-gcd 16406  df-prm 16583  df-pc 16749  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-ulm 26284  df-log 26463  df-cxp 26464  df-atan 26775  df-em 26901  df-cht 27005  df-vma 27006  df-chp 27007  df-ppi 27008
This theorem is referenced by:  pntrsumbnd2  27476
  Copyright terms: Public domain W3C validator