Step | Hyp | Ref
| Expression |
1 | | fzfid 13621 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2
· 𝑁)) ∈
Fin) |
2 | | 2nn 11976 |
. . . . . . . . . . 11
⊢ 2 ∈
ℕ |
3 | | nnmulcl 11927 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
4 | 2, 3 | mpan 686 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) ∈
ℕ) |
5 | 4 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈
ℕ) |
6 | | prmnn 16307 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
7 | 6 | ad2antlr 723 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ) |
8 | | elfznn 13214 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ) |
9 | 8 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ) |
10 | 9 | nnnn0d 12223 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0) |
11 | 7, 10 | nnexpcld 13888 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℕ) |
12 | | nnrp 12670 |
. . . . . . . . . 10
⊢ ((2
· 𝑁) ∈ ℕ
→ (2 · 𝑁)
∈ ℝ+) |
13 | | nnrp 12670 |
. . . . . . . . . 10
⊢ ((𝑃↑𝑘) ∈ ℕ → (𝑃↑𝑘) ∈
ℝ+) |
14 | | rpdivcl 12684 |
. . . . . . . . . 10
⊢ (((2
· 𝑁) ∈
ℝ+ ∧ (𝑃↑𝑘) ∈ ℝ+) → ((2
· 𝑁) / (𝑃↑𝑘)) ∈
ℝ+) |
15 | 12, 13, 14 | syl2an 595 |
. . . . . . . . 9
⊢ (((2
· 𝑁) ∈ ℕ
∧ (𝑃↑𝑘) ∈ ℕ) → ((2
· 𝑁) / (𝑃↑𝑘)) ∈
ℝ+) |
16 | 5, 11, 15 | syl2anc 583 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃↑𝑘)) ∈
ℝ+) |
17 | 16 | rpred 12701 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃↑𝑘)) ∈ ℝ) |
18 | 17 | flcld 13446 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2
· 𝑁) / (𝑃↑𝑘))) ∈ ℤ) |
19 | | 2z 12282 |
. . . . . . 7
⊢ 2 ∈
ℤ |
20 | | simpll 763 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ) |
21 | | nnrp 12670 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
22 | | rpdivcl 12684 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℝ+
∧ (𝑃↑𝑘) ∈ ℝ+)
→ (𝑁 / (𝑃↑𝑘)) ∈
ℝ+) |
23 | 21, 13, 22 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ (𝑃↑𝑘) ∈ ℕ) → (𝑁 / (𝑃↑𝑘)) ∈
ℝ+) |
24 | 20, 11, 23 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈
ℝ+) |
25 | 24 | rpred 12701 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
26 | 25 | flcld 13446 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) |
27 | | zmulcl 12299 |
. . . . . . 7
⊢ ((2
∈ ℤ ∧ (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℤ) → (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))) ∈ ℤ) |
28 | 19, 26, 27 | sylancr 586 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))) ∈ ℤ) |
29 | 18, 28 | zsubcld 12360 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ∈ ℤ) |
30 | 29 | zred 12355 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ∈ ℝ) |
31 | | 1re 10906 |
. . . . . 6
⊢ 1 ∈
ℝ |
32 | | 0re 10908 |
. . . . . 6
⊢ 0 ∈
ℝ |
33 | 31, 32 | ifcli 4503 |
. . . . 5
⊢ if(𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ |
34 | 33 | a1i 11 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1, 0)
∈ ℝ) |
35 | 28 | zred 12355 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))) ∈ ℝ) |
36 | 17, 35 | resubcld 11333 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ∈ ℝ) |
37 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈
ℝ) |
39 | 18 | zred 12355 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2
· 𝑁) / (𝑃↑𝑘))) ∈ ℝ) |
40 | | flle 13447 |
. . . . . . . . . . 11
⊢ (((2
· 𝑁) / (𝑃↑𝑘)) ∈ ℝ → (⌊‘((2
· 𝑁) / (𝑃↑𝑘))) ≤ ((2 · 𝑁) / (𝑃↑𝑘))) |
41 | 17, 40 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2
· 𝑁) / (𝑃↑𝑘))) ≤ ((2 · 𝑁) / (𝑃↑𝑘))) |
42 | 39, 17, 35, 41 | lesub1dd 11521 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
43 | | resubcl 11215 |
. . . . . . . . . . . . 13
⊢ (((𝑁 / (𝑃↑𝑘)) ∈ ℝ ∧ 1 ∈ ℝ)
→ ((𝑁 / (𝑃↑𝑘)) − 1) ∈
ℝ) |
44 | 25, 31, 43 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃↑𝑘)) − 1) ∈
ℝ) |
45 | | remulcl 10887 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ ((𝑁 /
(𝑃↑𝑘)) − 1) ∈ ℝ) → (2
· ((𝑁 / (𝑃↑𝑘)) − 1)) ∈
ℝ) |
46 | 37, 44, 45 | sylancr 586 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) ∈
ℝ) |
47 | | flltp1 13448 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 / (𝑃↑𝑘)) ∈ ℝ → (𝑁 / (𝑃↑𝑘)) < ((⌊‘(𝑁 / (𝑃↑𝑘))) + 1)) |
48 | 25, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) < ((⌊‘(𝑁 / (𝑃↑𝑘))) + 1)) |
49 | | 1red 10907 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈
ℝ) |
50 | 26 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℝ) |
51 | 25, 49, 50 | ltsubaddd 11501 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃↑𝑘)) − 1) < (⌊‘(𝑁 / (𝑃↑𝑘))) ↔ (𝑁 / (𝑃↑𝑘)) < ((⌊‘(𝑁 / (𝑃↑𝑘))) + 1))) |
52 | 48, 51 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃↑𝑘)) − 1) < (⌊‘(𝑁 / (𝑃↑𝑘)))) |
53 | | 2pos 12006 |
. . . . . . . . . . . . . . 15
⊢ 0 <
2 |
54 | 37, 53 | pm3.2i 470 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
ℝ ∧ 0 < 2) |
55 | | ltmul2 11756 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 / (𝑃↑𝑘)) − 1) ∈ ℝ ∧
(⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℝ ∧ (2 ∈ ℝ
∧ 0 < 2)) → (((𝑁 / (𝑃↑𝑘)) − 1) < (⌊‘(𝑁 / (𝑃↑𝑘))) ↔ (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) < (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))))) |
56 | 54, 55 | mp3an3 1448 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 / (𝑃↑𝑘)) − 1) ∈ ℝ ∧
(⌊‘(𝑁 / (𝑃↑𝑘))) ∈ ℝ) → (((𝑁 / (𝑃↑𝑘)) − 1) < (⌊‘(𝑁 / (𝑃↑𝑘))) ↔ (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) < (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))))) |
57 | 44, 50, 56 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃↑𝑘)) − 1) < (⌊‘(𝑁 / (𝑃↑𝑘))) ↔ (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) < (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘)))))) |
58 | 52, 57 | mpbid 231 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) < (2 ·
(⌊‘(𝑁 / (𝑃↑𝑘))))) |
59 | 46, 35, 17, 58 | ltsub2dd 11518 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · ((𝑁 / (𝑃↑𝑘)) − 1)))) |
60 | | 2cnd 11981 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈
ℂ) |
61 | | nncn 11911 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
62 | 61 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ) |
63 | 11 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℂ) |
64 | 11 | nnne0d 11953 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ≠ 0) |
65 | 60, 62, 63, 64 | divassd 11716 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃↑𝑘)) = (2 · (𝑁 / (𝑃↑𝑘)))) |
66 | 25 | recnd 10934 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃↑𝑘)) ∈ ℂ) |
67 | 60, 66 | muls1d 11365 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃↑𝑘)) − 1)) = ((2 · (𝑁 / (𝑃↑𝑘))) − 2)) |
68 | 65, 67 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · ((𝑁 / (𝑃↑𝑘)) − 1))) = ((2 · (𝑁 / (𝑃↑𝑘))) − ((2 · (𝑁 / (𝑃↑𝑘))) − 2))) |
69 | | remulcl 10887 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℝ ∧ (𝑁 /
(𝑃↑𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃↑𝑘))) ∈ ℝ) |
70 | 37, 25, 69 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃↑𝑘))) ∈ ℝ) |
71 | 70 | recnd 10934 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃↑𝑘))) ∈ ℂ) |
72 | | 2cn 11978 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℂ |
73 | | nncan 11180 |
. . . . . . . . . . . 12
⊢ (((2
· (𝑁 / (𝑃↑𝑘))) ∈ ℂ ∧ 2 ∈ ℂ)
→ ((2 · (𝑁 /
(𝑃↑𝑘))) − ((2 · (𝑁 / (𝑃↑𝑘))) − 2)) = 2) |
74 | 71, 72, 73 | sylancl 585 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃↑𝑘))) − ((2 · (𝑁 / (𝑃↑𝑘))) − 2)) = 2) |
75 | 68, 74 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · ((𝑁 / (𝑃↑𝑘)) − 1))) = 2) |
76 | 59, 75 | breqtrd 5096 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < 2) |
77 | 30, 36, 38, 42, 76 | lelttrd 11063 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < 2) |
78 | | df-2 11966 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
79 | 77, 78 | breqtrdi 5111 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < (1 + 1)) |
80 | | 1z 12280 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
81 | | zleltp1 12301 |
. . . . . . . 8
⊢
((((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ)
→ (((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 1 ↔ ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < (1 + 1))) |
82 | 29, 80, 81 | sylancl 585 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 1 ↔ ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) < (1 + 1))) |
83 | 79, 82 | mpbird 256 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 1) |
84 | | iftrue 4462 |
. . . . . . 7
⊢ (𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1, 0) =
1) |
85 | 84 | breq2d 5082 |
. . . . . 6
⊢ (𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 ·
𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1, 0)
↔ ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 1)) |
86 | 83, 85 | syl5ibrcom 246 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) →
((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0))) |
87 | 9 | nnge1d 11951 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘) |
88 | 87 | biantrurd 532 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 ·
𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘 ∧ 𝑘 ≤ (⌊‘((log‘(2 ·
𝑁)) / (log‘𝑃)))))) |
89 | 6 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℕ) |
90 | 89 | nnred 11918 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℝ) |
91 | | prmuz2 16329 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
92 | 91 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
(ℤ≥‘2)) |
93 | | eluz2gt1 12589 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ∈
(ℤ≥‘2) → 1 < 𝑃) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 <
𝑃) |
95 | 90, 94 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 <
𝑃)) |
96 | 95 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
97 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ) |
98 | 97 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ) |
99 | 4 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℕ) |
100 | 99 | nnrpd 12699 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℝ+) |
101 | 100 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈
ℝ+) |
102 | | efexple 26334 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℝ ∧ 1 <
𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+)
→ ((𝑃↑𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 ·
𝑁)) / (log‘𝑃))))) |
103 | 96, 98, 101, 102 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃↑𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 ·
𝑁)) / (log‘𝑃))))) |
104 | 9 | nnzd 12354 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ) |
105 | 80 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈
ℤ) |
106 | 99 | nnred 11918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℝ) |
107 | | 1red 10907 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈
ℝ) |
108 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈
ℝ) |
109 | | 1lt2 12074 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 <
2 |
110 | 109 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 <
2) |
111 | | 2t1e2 12066 |
. . . . . . . . . . . . . . . . . 18
⊢ (2
· 1) = 2 |
112 | | nnre 11910 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
113 | 112 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈
ℝ) |
114 | | 0le2 12005 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 0 ≤
2 |
115 | 37, 114 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (2 ∈
ℝ ∧ 0 ≤ 2) |
116 | 115 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
∈ ℝ ∧ 0 ≤ 2)) |
117 | | nnge1 11931 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 1 ≤
𝑁) |
118 | 117 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤
𝑁) |
119 | | lemul2a 11760 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((1
∈ ℝ ∧ 𝑁
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2
· 𝑁)) |
120 | 107, 113,
116, 118, 119 | syl31anc 1371 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 1) ≤ (2 · 𝑁)) |
121 | 111, 120 | eqbrtrrid 5106 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤
(2 · 𝑁)) |
122 | 107, 108,
106, 110, 121 | ltletrd 11065 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 <
(2 · 𝑁)) |
123 | 106, 122 | rplogcld 25689 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(log‘(2 · 𝑁))
∈ ℝ+) |
124 | 90, 94 | rplogcld 25689 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(log‘𝑃) ∈
ℝ+) |
125 | 123, 124 | rpdivcld 12718 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
((log‘(2 · 𝑁))
/ (log‘𝑃)) ∈
ℝ+) |
126 | 125 | rpred 12701 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
((log‘(2 · 𝑁))
/ (log‘𝑃)) ∈
ℝ) |
127 | 126 | flcld 13446 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) |
128 | 127 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) |
129 | | elfz 13174 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ 1 ∈
ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘 ∧ 𝑘 ≤ (⌊‘((log‘(2 ·
𝑁)) / (log‘𝑃)))))) |
130 | 104, 105,
128, 129 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) ↔ (1
≤ 𝑘 ∧ 𝑘 ≤
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))) |
131 | 88, 103, 130 | 3bitr4rd 311 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) ↔
(𝑃↑𝑘) ≤ (2 · 𝑁))) |
132 | 131 | notbid 317 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃↑𝑘) ≤ (2 · 𝑁))) |
133 | 106 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈
ℝ) |
134 | 11 | nnred 11918 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃↑𝑘) ∈ ℝ) |
135 | 133, 134 | ltnled 11052 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃↑𝑘) ↔ ¬ (𝑃↑𝑘) ≤ (2 · 𝑁))) |
136 | 132, 135 | bitr4d 281 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃↑𝑘))) |
137 | 16 | rpge0d 12705 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 ·
𝑁) / (𝑃↑𝑘))) |
138 | 137 | adantrr 713 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃↑𝑘))) |
139 | 11 | nngt0d 11952 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃↑𝑘)) |
140 | | ltdivmul 11780 |
. . . . . . . . . . . . . . . . 17
⊢ (((2
· 𝑁) ∈ ℝ
∧ 1 ∈ ℝ ∧ ((𝑃↑𝑘) ∈ ℝ ∧ 0 < (𝑃↑𝑘))) → (((2 · 𝑁) / (𝑃↑𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃↑𝑘) · 1))) |
141 | 133, 49, 134, 139, 140 | syl112anc 1372 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃↑𝑘) · 1))) |
142 | 63 | mulid1d 10923 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃↑𝑘) · 1) = (𝑃↑𝑘)) |
143 | 142 | breq2d 5082 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃↑𝑘) · 1) ↔ (2 · 𝑁) < (𝑃↑𝑘))) |
144 | 141, 143 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃↑𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃↑𝑘))) |
145 | 144 | biimprd 247 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃↑𝑘) → ((2 · 𝑁) / (𝑃↑𝑘)) < 1)) |
146 | 145 | impr 454 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((2 · 𝑁) / (𝑃↑𝑘)) < 1) |
147 | | 0p1e1 12025 |
. . . . . . . . . . . . 13
⊢ (0 + 1) =
1 |
148 | 146, 147 | breqtrrdi 5112 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((2 · 𝑁) / (𝑃↑𝑘)) < (0 + 1)) |
149 | 17 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((2 · 𝑁) / (𝑃↑𝑘)) ∈ ℝ) |
150 | | 0z 12260 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
151 | | flbi 13464 |
. . . . . . . . . . . . 13
⊢ ((((2
· 𝑁) / (𝑃↑𝑘)) ∈ ℝ ∧ 0 ∈ ℤ)
→ ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃↑𝑘)) ∧ ((2 · 𝑁) / (𝑃↑𝑘)) < (0 + 1)))) |
152 | 149, 150,
151 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃↑𝑘)) ∧ ((2 · 𝑁) / (𝑃↑𝑘)) < (0 + 1)))) |
153 | 138, 148,
152 | mpbir2and 709 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (⌊‘((2 · 𝑁) / (𝑃↑𝑘))) = 0) |
154 | 24 | rpge0d 12705 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃↑𝑘))) |
155 | 154 | adantrr 713 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → 0 ≤ (𝑁 / (𝑃↑𝑘))) |
156 | 112, 21 | ltaddrp2d 12735 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁)) |
157 | 61 | 2timesd 12146 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) = (𝑁 + 𝑁)) |
158 | 156, 157 | breqtrrd 5098 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁)) |
159 | 158 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁)) |
160 | 112 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ) |
161 | | lttr 10982 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℝ ∧ (2
· 𝑁) ∈ ℝ
∧ (𝑃↑𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃↑𝑘)) → 𝑁 < (𝑃↑𝑘))) |
162 | 160, 133,
134, 161 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃↑𝑘)) → 𝑁 < (𝑃↑𝑘))) |
163 | 159, 162 | mpand 691 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃↑𝑘) → 𝑁 < (𝑃↑𝑘))) |
164 | | ltdivmul 11780 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℝ ∧ 1 ∈
ℝ ∧ ((𝑃↑𝑘) ∈ ℝ ∧ 0 < (𝑃↑𝑘))) → ((𝑁 / (𝑃↑𝑘)) < 1 ↔ 𝑁 < ((𝑃↑𝑘) · 1))) |
165 | 160, 49, 134, 139, 164 | syl112anc 1372 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃↑𝑘)) < 1 ↔ 𝑁 < ((𝑃↑𝑘) · 1))) |
166 | 142 | breq2d 5082 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃↑𝑘) · 1) ↔ 𝑁 < (𝑃↑𝑘))) |
167 | 165, 166 | bitrd 278 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃↑𝑘)) < 1 ↔ 𝑁 < (𝑃↑𝑘))) |
168 | 163, 167 | sylibrd 258 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃↑𝑘) → (𝑁 / (𝑃↑𝑘)) < 1)) |
169 | 168 | impr 454 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (𝑁 / (𝑃↑𝑘)) < 1) |
170 | 169, 147 | breqtrrdi 5112 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (𝑁 / (𝑃↑𝑘)) < (0 + 1)) |
171 | 25 | adantrr 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (𝑁 / (𝑃↑𝑘)) ∈ ℝ) |
172 | | flbi 13464 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 / (𝑃↑𝑘)) ∈ ℝ ∧ 0 ∈ ℤ)
→ ((⌊‘(𝑁 /
(𝑃↑𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑘)) ∧ (𝑁 / (𝑃↑𝑘)) < (0 + 1)))) |
173 | 171, 150,
172 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((⌊‘(𝑁 / (𝑃↑𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃↑𝑘)) ∧ (𝑁 / (𝑃↑𝑘)) < (0 + 1)))) |
174 | 155, 170,
173 | mpbir2and 709 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (⌊‘(𝑁 / (𝑃↑𝑘))) = 0) |
175 | 174 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = (2 · 0)) |
176 | | 2t0e0 12072 |
. . . . . . . . . . . 12
⊢ (2
· 0) = 0 |
177 | 175, 176 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))) = 0) |
178 | 153, 177 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) = (0 − 0)) |
179 | | 0m0e0 12023 |
. . . . . . . . . 10
⊢ (0
− 0) = 0 |
180 | 178, 179 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) = 0) |
181 | | 0le0 12004 |
. . . . . . . . 9
⊢ 0 ≤
0 |
182 | 180, 181 | eqbrtrdi 5109 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃↑𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 0) |
183 | 182 | expr 456 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃↑𝑘) → ((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 0)) |
184 | 136, 183 | sylbid 239 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 ·
𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 0)) |
185 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1, 0) =
0) |
186 | 185 | eqcomd 2744 |
. . . . . . 7
⊢ (¬
𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0)) |
187 | 186 | breq2d 5082 |
. . . . . 6
⊢ (¬
𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 ·
𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ 0 ↔ ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0))) |
188 | 184, 187 | mpbidi 240 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 ·
𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0))) |
189 | 86, 188 | pm2.61d 179 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2
· 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0)) |
190 | 1, 30, 34, 189 | fsumle 15439 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
Σ𝑘 ∈ (1...(2
· 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0)) |
191 | | pcbcctr 26329 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃↑𝑘))) − (2 · (⌊‘(𝑁 / (𝑃↑𝑘)))))) |
192 | 127 | zred 12355 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ) |
193 | | flle 13447 |
. . . . . . . . 9
⊢
(((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) |
194 | 126, 193 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) |
195 | 99 | nnnn0d 12223 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℕ0) |
196 | 89, 195 | nnexpcld 13888 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈
ℕ) |
197 | 196 | nnred 11918 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈
ℝ) |
198 | | bernneq3 13874 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2
· 𝑁) < (𝑃↑(2 · 𝑁))) |
199 | 92, 195, 198 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) < (𝑃↑(2 · 𝑁))) |
200 | 106, 197,
199 | ltled 11053 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ≤ (𝑃↑(2 · 𝑁))) |
201 | 100 | reeflogd 25684 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(exp‘(log‘(2 · 𝑁))) = (2 · 𝑁)) |
202 | 89 | nnrpd 12699 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℝ+) |
203 | 99 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
ℤ) |
204 | | reexplog 25655 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈ ℝ+
∧ (2 · 𝑁) ∈
ℤ) → (𝑃↑(2
· 𝑁)) =
(exp‘((2 · 𝑁)
· (log‘𝑃)))) |
205 | 202, 203,
204 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 ·
𝑁) ·
(log‘𝑃)))) |
206 | 205 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(exp‘((2 · 𝑁)
· (log‘𝑃))) =
(𝑃↑(2 · 𝑁))) |
207 | 200, 201,
206 | 3brtr4d 5102 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))) |
208 | 100 | relogcld 25683 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(log‘(2 · 𝑁))
∈ ℝ) |
209 | 124 | rpred 12701 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(log‘𝑃) ∈
ℝ) |
210 | 106, 209 | remulcld 10936 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2
· 𝑁) ·
(log‘𝑃)) ∈
ℝ) |
211 | | efle 15755 |
. . . . . . . . . . 11
⊢
(((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) →
((log‘(2 · 𝑁))
≤ ((2 · 𝑁)
· (log‘𝑃))
↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))) |
212 | 208, 210,
211 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
((log‘(2 · 𝑁))
≤ ((2 · 𝑁)
· (log‘𝑃))
↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))) |
213 | 207, 212 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(log‘(2 · 𝑁))
≤ ((2 · 𝑁)
· (log‘𝑃))) |
214 | 208, 106,
124 | ledivmul2d 12755 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))) |
215 | 213, 214 | mpbird 256 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
((log‘(2 · 𝑁))
/ (log‘𝑃)) ≤ (2
· 𝑁)) |
216 | 192, 126,
106, 194, 215 | letrd 11062 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)) |
217 | | eluz 12525 |
. . . . . . . 8
⊢
(((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2
· 𝑁) ∈
(ℤ≥‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))) |
218 | 127, 203,
217 | syl2anc 583 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2
· 𝑁) ∈
(ℤ≥‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))) |
219 | 216, 218 | mpbird 256 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2
· 𝑁) ∈
(ℤ≥‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) |
220 | | fzss2 13225 |
. . . . . 6
⊢ ((2
· 𝑁) ∈
(ℤ≥‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) →
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) |
221 | 219, 220 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) |
222 | | sumhash 16525 |
. . . . 5
⊢ (((1...(2
· 𝑁)) ∈ Fin
∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1, 0) =
(♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))) |
223 | 1, 221, 222 | syl2anc 583 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
Σ𝑘 ∈ (1...(2
· 𝑁))if(𝑘 ∈
(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) =
(♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))) |
224 | 125 | rprege0d 12708 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤
((log‘(2 · 𝑁))
/ (log‘𝑃)))) |
225 | | flge0nn0 13468 |
. . . . 5
⊢
((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤
((log‘(2 · 𝑁))
/ (log‘𝑃))) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈
ℕ0) |
226 | | hashfz1 13988 |
. . . . 5
⊢
((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 →
(♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) |
227 | 224, 225,
226 | 3syl 18 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) |
228 | 223, 227 | eqtr2d 2779 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) →
(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))), 1,
0)) |
229 | 190, 191,
228 | 3brtr4d 5102 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃)))) |
230 | | simpr 484 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈
ℙ) |
231 | | nnnn0 12170 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
232 | | fzctr 13297 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈ (0...(2
· 𝑁))) |
233 | | bccl2 13965 |
. . . . . . 7
⊢ (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ) |
234 | 231, 232,
233 | 3syl 18 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁)C𝑁) ∈
ℕ) |
235 | 234 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2
· 𝑁)C𝑁) ∈
ℕ) |
236 | 230, 235 | pccld 16479 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈
ℕ0) |
237 | 236 | nn0zd 12353 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) |
238 | | efexple 26334 |
. . 3
⊢ (((𝑃 ∈ ℝ ∧ 1 <
𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+)
→ ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃))))) |
239 | 90, 94, 237, 100, 238 | syl211anc 1374 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2
· 𝑁)) /
(log‘𝑃))))) |
240 | 229, 239 | mpbird 256 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁)) |