MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   GIF version

Theorem bposlem1 27202
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))

Proof of Theorem bposlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13945 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2 · 𝑁)) ∈ Fin)
2 2nn 12266 . . . . . . . . . . 11 2 ∈ ℕ
3 nnmulcl 12217 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
42, 3mpan 690 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
54ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ)
6 prmnn 16651 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76ad2antlr 727 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ)
8 elfznn 13521 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
98adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ)
109nnnn0d 12510 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0)
117, 10nnexpcld 14217 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
12 nnrp 12970 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
13 nnrp 12970 . . . . . . . . . 10 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℝ+)
14 rpdivcl 12985 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1512, 13, 14syl2an 596 . . . . . . . . 9 (((2 · 𝑁) ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
165, 11, 15syl2anc 584 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1716rpred 13002 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
1817flcld 13767 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℤ)
19 2z 12572 . . . . . . 7 2 ∈ ℤ
20 simpll 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ)
21 nnrp 12970 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 rpdivcl 12985 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2321, 13, 22syl2an 596 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2420, 11, 23syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2524rpred 13002 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2625flcld 13767 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
27 zmulcl 12589 . . . . . . 7 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2819, 26, 27sylancr 587 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2918, 28zsubcld 12650 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ)
3029zred 12645 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
31 1re 11181 . . . . . 6 1 ∈ ℝ
32 0re 11183 . . . . . 6 0 ∈ ℝ
3331, 32ifcli 4539 . . . . 5 if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ
3433a1i 11 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ)
3528zred 12645 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℝ)
3617, 35resubcld 11613 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
37 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
3837a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℝ)
3918zred 12645 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℝ)
40 flle 13768 . . . . . . . . . . 11 (((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4117, 40syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4239, 17, 35, 41lesub1dd 11801 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
43 resubcl 11493 . . . . . . . . . . . . 13 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
4425, 31, 43sylancl 586 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
45 remulcl 11160 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
4637, 44, 45sylancr 587 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
47 flltp1 13769 . . . . . . . . . . . . . 14 ((𝑁 / (𝑃𝑘)) ∈ ℝ → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
4825, 47syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
49 1red 11182 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℝ)
5026zred 12645 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ)
5125, 49, 50ltsubaddd 11781 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1)))
5248, 51mpbird 257 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))))
53 2pos 12296 . . . . . . . . . . . . . . 15 0 < 2
5437, 53pm3.2i 470 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
55 ltmul2 12040 . . . . . . . . . . . . . 14 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5654, 55mp3an3 1452 . . . . . . . . . . . . 13 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5744, 50, 56syl2anc 584 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5852, 57mpbid 232 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
5946, 35, 17, 58ltsub2dd 11798 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))))
60 2cnd 12271 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℂ)
61 nncn 12201 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6261ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ)
6311nncnd 12209 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℂ)
6411nnne0d 12243 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ≠ 0)
6560, 62, 63, 64divassd 12000 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) = (2 · (𝑁 / (𝑃𝑘))))
6625recnd 11209 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℂ)
6760, 66muls1d 11645 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2))
6865, 67oveq12d 7408 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)))
69 remulcl 11160 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑁 / (𝑃𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7037, 25, 69sylancr 587 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7170recnd 11209 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℂ)
72 2cn 12268 . . . . . . . . . . . 12 2 ∈ ℂ
73 nncan 11458 . . . . . . . . . . . 12 (((2 · (𝑁 / (𝑃𝑘))) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7471, 72, 73sylancl 586 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7568, 74eqtrd 2765 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = 2)
7659, 75breqtrd 5136 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
7730, 36, 38, 42, 76lelttrd 11339 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
78 df-2 12256 . . . . . . . 8 2 = (1 + 1)
7977, 78breqtrdi 5151 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1))
80 1z 12570 . . . . . . . 8 1 ∈ ℤ
81 zleltp1 12591 . . . . . . . 8 ((((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8229, 80, 81sylancl 586 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8379, 82mpbird 257 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1)
84 iftrue 4497 . . . . . . 7 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 1)
8584breq2d 5122 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1))
8683, 85syl5ibrcom 247 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
879nnge1d 12241 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘)
8887biantrurd 532 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
896adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
9089nnred 12208 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
91 prmuz2 16673 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
93 eluz2gt1 12886 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
9492, 93syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 𝑃)
9590, 94jca 511 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
9695adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
97 elfzelz 13492 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ)
9897adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
994adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
10099nnrpd 13000 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ+)
101100adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ+)
102 efexple 27199 . . . . . . . . . . 11 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
10396, 98, 101, 102syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
1049nnzd 12563 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
10580a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℤ)
10699nnred 12208 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
107 1red 11182 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
10837a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℝ)
109 1lt2 12359 . . . . . . . . . . . . . . . . . 18 1 < 2
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 2)
111 2t1e2 12351 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
112 nnre 12200 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
113112adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
114 0le2 12295 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 2
11537, 114pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℝ ∧ 0 ≤ 2)
116115a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℝ ∧ 0 ≤ 2))
117 nnge1 12221 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
118117adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤ 𝑁)
119 lemul2a 12044 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑁))
120107, 113, 116, 118, 119syl31anc 1375 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 1) ≤ (2 · 𝑁))
121111, 120eqbrtrrid 5146 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤ (2 · 𝑁))
122107, 108, 106, 110, 121ltletrd 11341 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < (2 · 𝑁))
123106, 122rplogcld 26545 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ+)
12490, 94rplogcld 26545 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ+)
125123, 124rpdivcld 13019 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ+)
126125rpred 13002 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ)
127126flcld 13767 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
128127adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
129 elfz 13481 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
130104, 105, 128, 129syl3anc 1373 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
13188, 103, 1303bitr4rd 312 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (𝑃𝑘) ≤ (2 · 𝑁)))
132131notbid 318 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
133106adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ)
13411nnred 12208 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℝ)
135133, 134ltnled 11328 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
136132, 135bitr4d 282 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃𝑘)))
13716rpge0d 13006 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
138137adantrr 717 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
13911nngt0d 12242 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃𝑘))
140 ltdivmul 12065 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
141133, 49, 134, 139, 140syl112anc 1376 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
14263mulridd 11198 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) · 1) = (𝑃𝑘))
143142breq2d 5122 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃𝑘) · 1) ↔ (2 · 𝑁) < (𝑃𝑘)))
144141, 143bitrd 279 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃𝑘)))
145144biimprd 248 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((2 · 𝑁) / (𝑃𝑘)) < 1))
146145impr 454 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
147 0p1e1 12310 . . . . . . . . . . . . 13 (0 + 1) = 1
148146, 147breqtrrdi 5152 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
14917adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
150 0z 12547 . . . . . . . . . . . . 13 0 ∈ ℤ
151 flbi 13785 . . . . . . . . . . . . 13 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
152149, 150, 151sylancl 586 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
153138, 148, 152mpbir2and 713 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
15424rpge0d 13006 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃𝑘)))
155154adantrr 717 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ (𝑁 / (𝑃𝑘)))
156112, 21ltaddrp2d 13036 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁))
157612timesd 12432 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
158156, 157breqtrrd 5138 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁))
159158ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁))
160112ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
161 lttr 11257 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑃𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
162160, 133, 134, 161syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
163159, 162mpand 695 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → 𝑁 < (𝑃𝑘)))
164 ltdivmul 12065 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
165160, 49, 134, 139, 164syl112anc 1376 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
166142breq2d 5122 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃𝑘) · 1) ↔ 𝑁 < (𝑃𝑘)))
167165, 166bitrd 279 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < (𝑃𝑘)))
168163, 167sylibrd 259 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → (𝑁 / (𝑃𝑘)) < 1))
169168impr 454 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < 1)
170169, 147breqtrrdi 5152 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < (0 + 1))
17125adantrr 717 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
172 flbi 13785 . . . . . . . . . . . . . . 15 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
173171, 150, 172sylancl 586 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
174155, 170, 173mpbir2and 713 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
175174oveq2d 7406 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
176 2t0e0 12357 . . . . . . . . . . . 12 (2 · 0) = 0
177175, 176eqtrdi 2781 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
178153, 177oveq12d 7408 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
179 0m0e0 12308 . . . . . . . . . 10 (0 − 0) = 0
180178, 179eqtrdi 2781 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
181 0le0 12294 . . . . . . . . 9 0 ≤ 0
182180, 181eqbrtrdi 5149 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0)
183182expr 456 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
184136, 183sylbid 240 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
185 iffalse 4500 . . . . . . . 8 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 0)
186185eqcomd 2736 . . . . . . 7 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
187186breq2d 5122 . . . . . 6 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
188184, 187mpbidi 241 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
18986, 188pm2.61d 179 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
1901, 30, 34, 189fsumle 15772 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
191 pcbcctr 27194 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
192127zred 12645 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ)
193 flle 13768 . . . . . . . . 9 (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
194126, 193syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
19599nnnn0d 12510 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ0)
19689, 195nnexpcld 14217 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℕ)
197196nnred 12208 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℝ)
198 bernneq3 14203 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
19992, 195, 198syl2anc 584 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
200106, 197, 199ltled 11329 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ≤ (𝑃↑(2 · 𝑁)))
201100reeflogd 26540 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
20289nnrpd 13000 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ+)
20399nnzd 12563 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℤ)
204 reexplog 26511 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ+ ∧ (2 · 𝑁) ∈ ℤ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
205202, 203, 204syl2anc 584 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
206205eqcomd 2736 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘((2 · 𝑁) · (log‘𝑃))) = (𝑃↑(2 · 𝑁)))
207200, 201, 2063brtr4d 5142 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))
208100relogcld 26539 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ)
209124rpred 13002 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ)
210106, 209remulcld 11211 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ)
211 efle 16093 . . . . . . . . . . 11 (((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
212208, 210, 211syl2anc 584 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
213207, 212mpbird 257 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))
214208, 106, 124ledivmul2d 13056 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃))))
215213, 214mpbird 257 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁))
216192, 126, 106, 194, 215letrd 11338 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))
217 eluz 12814 . . . . . . . 8 (((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
218127, 203, 217syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
219216, 218mpbird 257 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
220 fzss2 13532 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
221219, 220syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
222 sumhash 16874 . . . . 5 (((1...(2 · 𝑁)) ∈ Fin ∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
2231, 221, 222syl2anc 584 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
224125rprege0d 13009 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))))
225 flge0nn0 13789 . . . . 5 ((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0)
226 hashfz1 14318 . . . . 5 ((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
227224, 225, 2263syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
228223, 227eqtr2d 2766 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
229190, 191, 2283brtr4d 5142 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
230 simpr 484 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
231 nnnn0 12456 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
232 fzctr 13608 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
233 bccl2 14295 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
234231, 232, 2333syl 18 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁)C𝑁) ∈ ℕ)
235234adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
236230, 235pccld 16828 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
237236nn0zd 12562 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
238 efexple 27199 . . 3 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
23990, 94, 237, 100, 238syl211anc 1378 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
240229, 239mpbird 257 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  ifcif 4491   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  cfl 13759  cexp 14033  Ccbc 14274  chash 14302  Σcsu 15659  expce 16034  cprime 16648   pCnt cpc 16814  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  bposlem5  27206  bposlem6  27207  chebbnd1lem1  27387
  Copyright terms: Public domain W3C validator