Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   GIF version

Theorem bposlem1 25968
 Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))

Proof of Theorem bposlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13391 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2 · 𝑁)) ∈ Fin)
2 2nn 11748 . . . . . . . . . . 11 2 ∈ ℕ
3 nnmulcl 11699 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
42, 3mpan 690 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
54ad2antrr 726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ)
6 prmnn 16071 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76ad2antlr 727 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ)
8 elfznn 12986 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
98adantl 486 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ)
109nnnn0d 11995 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0)
117, 10nnexpcld 13657 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
12 nnrp 12442 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
13 nnrp 12442 . . . . . . . . . 10 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℝ+)
14 rpdivcl 12456 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1512, 13, 14syl2an 599 . . . . . . . . 9 (((2 · 𝑁) ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
165, 11, 15syl2anc 588 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1716rpred 12473 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
1817flcld 13218 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℤ)
19 2z 12054 . . . . . . 7 2 ∈ ℤ
20 simpll 767 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ)
21 nnrp 12442 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 rpdivcl 12456 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2321, 13, 22syl2an 599 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2420, 11, 23syl2anc 588 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2524rpred 12473 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2625flcld 13218 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
27 zmulcl 12071 . . . . . . 7 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2819, 26, 27sylancr 591 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2918, 28zsubcld 12132 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ)
3029zred 12127 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
31 1re 10680 . . . . . 6 1 ∈ ℝ
32 0re 10682 . . . . . 6 0 ∈ ℝ
3331, 32ifcli 4468 . . . . 5 if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ
3433a1i 11 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ)
3528zred 12127 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℝ)
3617, 35resubcld 11107 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
37 2re 11749 . . . . . . . . . 10 2 ∈ ℝ
3837a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℝ)
3918zred 12127 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℝ)
40 flle 13219 . . . . . . . . . . 11 (((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4117, 40syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4239, 17, 35, 41lesub1dd 11295 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
43 resubcl 10989 . . . . . . . . . . . . 13 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
4425, 31, 43sylancl 590 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
45 remulcl 10661 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
4637, 44, 45sylancr 591 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
47 flltp1 13220 . . . . . . . . . . . . . 14 ((𝑁 / (𝑃𝑘)) ∈ ℝ → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
4825, 47syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
49 1red 10681 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℝ)
5026zred 12127 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ)
5125, 49, 50ltsubaddd 11275 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1)))
5248, 51mpbird 260 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))))
53 2pos 11778 . . . . . . . . . . . . . . 15 0 < 2
5437, 53pm3.2i 475 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
55 ltmul2 11530 . . . . . . . . . . . . . 14 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5654, 55mp3an3 1448 . . . . . . . . . . . . 13 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5744, 50, 56syl2anc 588 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5852, 57mpbid 235 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
5946, 35, 17, 58ltsub2dd 11292 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))))
60 2cnd 11753 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℂ)
61 nncn 11683 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6261ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ)
6311nncnd 11691 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℂ)
6411nnne0d 11725 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ≠ 0)
6560, 62, 63, 64divassd 11490 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) = (2 · (𝑁 / (𝑃𝑘))))
6625recnd 10708 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℂ)
6760, 66muls1d 11139 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2))
6865, 67oveq12d 7169 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)))
69 remulcl 10661 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑁 / (𝑃𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7037, 25, 69sylancr 591 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7170recnd 10708 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℂ)
72 2cn 11750 . . . . . . . . . . . 12 2 ∈ ℂ
73 nncan 10954 . . . . . . . . . . . 12 (((2 · (𝑁 / (𝑃𝑘))) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7471, 72, 73sylancl 590 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7568, 74eqtrd 2794 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = 2)
7659, 75breqtrd 5059 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
7730, 36, 38, 42, 76lelttrd 10837 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
78 df-2 11738 . . . . . . . 8 2 = (1 + 1)
7977, 78breqtrdi 5074 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1))
80 1z 12052 . . . . . . . 8 1 ∈ ℤ
81 zleltp1 12073 . . . . . . . 8 ((((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8229, 80, 81sylancl 590 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8379, 82mpbird 260 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1)
84 iftrue 4427 . . . . . . 7 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 1)
8584breq2d 5045 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1))
8683, 85syl5ibrcom 250 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
879nnge1d 11723 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘)
8887biantrurd 537 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
896adantl 486 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
9089nnred 11690 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
91 prmuz2 16093 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
9291adantl 486 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
93 eluz2gt1 12361 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
9492, 93syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 𝑃)
9590, 94jca 516 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
9695adantr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
97 elfzelz 12957 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ)
9897adantl 486 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
994adantr 485 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
10099nnrpd 12471 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ+)
101100adantr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ+)
102 efexple 25965 . . . . . . . . . . 11 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
10396, 98, 101, 102syl3anc 1369 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
1049nnzd 12126 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
10580a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℤ)
10699nnred 11690 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
107 1red 10681 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
10837a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℝ)
109 1lt2 11846 . . . . . . . . . . . . . . . . . 18 1 < 2
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 2)
111 2t1e2 11838 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
112 nnre 11682 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
113112adantr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
114 0le2 11777 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 2
11537, 114pm3.2i 475 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℝ ∧ 0 ≤ 2)
116115a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℝ ∧ 0 ≤ 2))
117 nnge1 11703 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
118117adantr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤ 𝑁)
119 lemul2a 11534 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑁))
120107, 113, 116, 118, 119syl31anc 1371 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 1) ≤ (2 · 𝑁))
121111, 120eqbrtrrid 5069 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤ (2 · 𝑁))
122107, 108, 106, 110, 121ltletrd 10839 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < (2 · 𝑁))
123106, 122rplogcld 25320 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ+)
12490, 94rplogcld 25320 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ+)
125123, 124rpdivcld 12490 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ+)
126125rpred 12473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ)
127126flcld 13218 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
128127adantr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
129 elfz 12946 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
130104, 105, 128, 129syl3anc 1369 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
13188, 103, 1303bitr4rd 316 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (𝑃𝑘) ≤ (2 · 𝑁)))
132131notbid 322 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
133106adantr 485 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ)
13411nnred 11690 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℝ)
135133, 134ltnled 10826 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
136132, 135bitr4d 285 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃𝑘)))
13716rpge0d 12477 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
138137adantrr 717 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
13911nngt0d 11724 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃𝑘))
140 ltdivmul 11554 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
141133, 49, 134, 139, 140syl112anc 1372 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
14263mulid1d 10697 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) · 1) = (𝑃𝑘))
143142breq2d 5045 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃𝑘) · 1) ↔ (2 · 𝑁) < (𝑃𝑘)))
144141, 143bitrd 282 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃𝑘)))
145144biimprd 251 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((2 · 𝑁) / (𝑃𝑘)) < 1))
146145impr 459 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
147 0p1e1 11797 . . . . . . . . . . . . 13 (0 + 1) = 1
148146, 147breqtrrdi 5075 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
14917adantrr 717 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
150 0z 12032 . . . . . . . . . . . . 13 0 ∈ ℤ
151 flbi 13236 . . . . . . . . . . . . 13 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
152149, 150, 151sylancl 590 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
153138, 148, 152mpbir2and 713 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
15424rpge0d 12477 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃𝑘)))
155154adantrr 717 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ (𝑁 / (𝑃𝑘)))
156112, 21ltaddrp2d 12507 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁))
157612timesd 11918 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
158156, 157breqtrrd 5061 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁))
159158ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁))
160112ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
161 lttr 10756 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑃𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
162160, 133, 134, 161syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
163159, 162mpand 695 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → 𝑁 < (𝑃𝑘)))
164 ltdivmul 11554 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
165160, 49, 134, 139, 164syl112anc 1372 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
166142breq2d 5045 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃𝑘) · 1) ↔ 𝑁 < (𝑃𝑘)))
167165, 166bitrd 282 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < (𝑃𝑘)))
168163, 167sylibrd 262 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → (𝑁 / (𝑃𝑘)) < 1))
169168impr 459 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < 1)
170169, 147breqtrrdi 5075 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < (0 + 1))
17125adantrr 717 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
172 flbi 13236 . . . . . . . . . . . . . . 15 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
173171, 150, 172sylancl 590 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
174155, 170, 173mpbir2and 713 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
175174oveq2d 7167 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
176 2t0e0 11844 . . . . . . . . . . . 12 (2 · 0) = 0
177175, 176eqtrdi 2810 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
178153, 177oveq12d 7169 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
179 0m0e0 11795 . . . . . . . . . 10 (0 − 0) = 0
180178, 179eqtrdi 2810 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
181 0le0 11776 . . . . . . . . 9 0 ≤ 0
182180, 181eqbrtrdi 5072 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0)
183182expr 461 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
184136, 183sylbid 243 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
185 iffalse 4430 . . . . . . . 8 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 0)
186185eqcomd 2765 . . . . . . 7 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
187186breq2d 5045 . . . . . 6 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
188184, 187mpbidi 244 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
18986, 188pm2.61d 182 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
1901, 30, 34, 189fsumle 15203 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
191 pcbcctr 25960 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
192127zred 12127 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ)
193 flle 13219 . . . . . . . . 9 (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
194126, 193syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
19599nnnn0d 11995 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ0)
19689, 195nnexpcld 13657 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℕ)
197196nnred 11690 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℝ)
198 bernneq3 13643 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
19992, 195, 198syl2anc 588 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
200106, 197, 199ltled 10827 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ≤ (𝑃↑(2 · 𝑁)))
201100reeflogd 25315 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
20289nnrpd 12471 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ+)
20399nnzd 12126 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℤ)
204 reexplog 25286 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ+ ∧ (2 · 𝑁) ∈ ℤ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
205202, 203, 204syl2anc 588 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
206205eqcomd 2765 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘((2 · 𝑁) · (log‘𝑃))) = (𝑃↑(2 · 𝑁)))
207200, 201, 2063brtr4d 5065 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))
208100relogcld 25314 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ)
209124rpred 12473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ)
210106, 209remulcld 10710 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ)
211 efle 15520 . . . . . . . . . . 11 (((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
212208, 210, 211syl2anc 588 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
213207, 212mpbird 260 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))
214208, 106, 124ledivmul2d 12527 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃))))
215213, 214mpbird 260 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁))
216192, 126, 106, 194, 215letrd 10836 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))
217 eluz 12297 . . . . . . . 8 (((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
218127, 203, 217syl2anc 588 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
219216, 218mpbird 260 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
220 fzss2 12997 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
221219, 220syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
222 sumhash 16288 . . . . 5 (((1...(2 · 𝑁)) ∈ Fin ∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
2231, 221, 222syl2anc 588 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
224125rprege0d 12480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))))
225 flge0nn0 13240 . . . . 5 ((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0)
226 hashfz1 13757 . . . . 5 ((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
227224, 225, 2263syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
228223, 227eqtr2d 2795 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
229190, 191, 2283brtr4d 5065 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
230 simpr 489 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
231 nnnn0 11942 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
232 fzctr 13069 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
233 bccl2 13734 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
234231, 232, 2333syl 18 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁)C𝑁) ∈ ℕ)
235234adantr 485 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
236230, 235pccld 16243 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
237236nn0zd 12125 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
238 efexple 25965 . . 3 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
23990, 94, 237, 100, 238syl211anc 1374 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
240229, 239mpbird 260 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ⊆ wss 3859  ifcif 4421   class class class wbr 5033  ‘cfv 6336  (class class class)co 7151  Fincfn 8528  ℂcc 10574  ℝcr 10575  0cc0 10576  1c1 10577   + caddc 10579   · cmul 10581   < clt 10714   ≤ cle 10715   − cmin 10909   / cdiv 11336  ℕcn 11675  2c2 11730  ℕ0cn0 11935  ℤcz 12021  ℤ≥cuz 12283  ℝ+crp 12431  ...cfz 12940  ⌊cfl 13210  ↑cexp 13480  Ccbc 13713  ♯chash 13741  Σcsu 15091  expce 15464  ℙcprime 16068   pCnt cpc 16229  logclog 25246 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9138  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-pre-sup 10654  ax-addf 10655  ax-mulf 10656 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-fi 8909  df-sup 8940  df-inf 8941  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-q 12390  df-rp 12432  df-xneg 12549  df-xadd 12550  df-xmul 12551  df-ioo 12784  df-ioc 12785  df-ico 12786  df-icc 12787  df-fz 12941  df-fzo 13084  df-fl 13212  df-mod 13288  df-seq 13420  df-exp 13481  df-fac 13685  df-bc 13714  df-hash 13742  df-shft 14475  df-cj 14507  df-re 14508  df-im 14509  df-sqrt 14643  df-abs 14644  df-limsup 14877  df-clim 14894  df-rlim 14895  df-sum 15092  df-ef 15470  df-sin 15472  df-cos 15473  df-pi 15475  df-dvds 15657  df-gcd 15895  df-prm 16069  df-pc 16230  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-rest 16755  df-topn 16756  df-0g 16774  df-gsum 16775  df-topgen 16776  df-pt 16777  df-prds 16780  df-xrs 16834  df-qtop 16839  df-imas 16840  df-xps 16842  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-submnd 18024  df-mulg 18293  df-cntz 18515  df-cmn 18976  df-psmet 20159  df-xmet 20160  df-met 20161  df-bl 20162  df-mopn 20163  df-fbas 20164  df-fg 20165  df-cnfld 20168  df-top 21595  df-topon 21612  df-topsp 21634  df-bases 21647  df-cld 21720  df-ntr 21721  df-cls 21722  df-nei 21799  df-lp 21837  df-perf 21838  df-cn 21928  df-cnp 21929  df-haus 22016  df-tx 22263  df-hmeo 22456  df-fil 22547  df-fm 22639  df-flim 22640  df-flf 22641  df-xms 23023  df-ms 23024  df-tms 23025  df-cncf 23580  df-limc 24566  df-dv 24567  df-log 25248 This theorem is referenced by:  bposlem5  25972  bposlem6  25973  chebbnd1lem1  26153
 Copyright terms: Public domain W3C validator