MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpt4g Structured version   Visualization version   GIF version

Theorem ovmpt4g 7493
Description: Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 6940.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
ovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ovmpt4g
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elisset 2813 . . 3 (𝐶𝑉 → ∃𝑧 𝑧 = 𝐶)
2 moeq 3661 . . . . . . 7 ∃*𝑧 𝑧 = 𝐶
32a1i 11 . . . . . 6 ((𝑥𝐴𝑦𝐵) → ∃*𝑧 𝑧 = 𝐶)
4 ovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
5 df-mpo 7351 . . . . . . 7 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
64, 5eqtri 2754 . . . . . 6 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
73, 6ovidi 7489 . . . . 5 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧))
8 eqeq2 2743 . . . . 5 (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶))
97, 8mpbidi 241 . . . 4 ((𝑥𝐴𝑦𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
109exlimdv 1934 . . 3 ((𝑥𝐴𝑦𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶))
111, 10syl5 34 . 2 ((𝑥𝐴𝑦𝐵) → (𝐶𝑉 → (𝑥𝐹𝑦) = 𝐶))
12113impia 1117 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  ∃*wmo 2533  (class class class)co 7346  {coprab 7347  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  ovmpos  7494  ov2gf  7495  ovmpodxf  7496  ovmpodf  7502  ofmres  7916  fnmpoovd  8017  mapxpen  9056  pwfseqlem2  10550  pwfseqlem3  10551  fullfunc  17815  fthfunc  17816  prfcl  18109  curf1cl  18134  curfcl  18138  hofcl  18165  gsum2d2lem  19885  gsum2d2  19886  gsumcom2  19887  dprdval  19917  dprd2d2  19958  cnmpt21  23586  cnmpt2t  23588  cnmptcom  23593  cnmpt2k  23603  xkocnv  23729  suppovss  32662  fedgmullem1  33642  fedgmullem2  33643  fedgmul  33644  madjusmdetlem1  33840  madjusmdetlem3  33842  finxpreclem5  37439  sdclem2  37792  smflimlem1  46879  smflimlem2  46880  aovmpt4g  47311  ovmpordxf  48449  ovmpt4d  48975  iinfconstbas  49177  rescofuf  49204
  Copyright terms: Public domain W3C validator