| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpt4g | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 6940.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| ovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| ovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2813 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐶) | |
| 2 | moeq 3661 | . . . . . . 7 ⊢ ∃*𝑧 𝑧 = 𝐶 | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧 𝑧 = 𝐶) |
| 4 | ovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | df-mpo 7351 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 6 | 4, 5 | eqtri 2754 | . . . . . 6 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 7 | 3, 6 | ovidi 7489 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧)) |
| 8 | eqeq2 2743 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶)) | |
| 9 | 7, 8 | mpbidi 241 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) |
| 10 | 9 | exlimdv 1934 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) |
| 11 | 1, 10 | syl5 34 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶 ∈ 𝑉 → (𝑥𝐹𝑦) = 𝐶)) |
| 12 | 11 | 3impia 1117 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃*wmo 2533 (class class class)co 7346 {coprab 7347 ∈ cmpo 7348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 |
| This theorem is referenced by: ovmpos 7494 ov2gf 7495 ovmpodxf 7496 ovmpodf 7502 ofmres 7916 fnmpoovd 8017 mapxpen 9056 pwfseqlem2 10550 pwfseqlem3 10551 fullfunc 17815 fthfunc 17816 prfcl 18109 curf1cl 18134 curfcl 18138 hofcl 18165 gsum2d2lem 19885 gsum2d2 19886 gsumcom2 19887 dprdval 19917 dprd2d2 19958 cnmpt21 23586 cnmpt2t 23588 cnmptcom 23593 cnmpt2k 23603 xkocnv 23729 suppovss 32662 fedgmullem1 33642 fedgmullem2 33643 fedgmul 33644 madjusmdetlem1 33840 madjusmdetlem3 33842 finxpreclem5 37439 sdclem2 37792 smflimlem1 46879 smflimlem2 46880 aovmpt4g 47311 ovmpordxf 48449 ovmpt4d 48975 iinfconstbas 49177 rescofuf 49204 |
| Copyright terms: Public domain | W3C validator |