| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ovmpt4g | Structured version Visualization version GIF version | ||
| Description: Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 6982.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| ovmpt4g.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| ovmpt4g | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2811 | . . 3 ⊢ (𝐶 ∈ 𝑉 → ∃𝑧 𝑧 = 𝐶) | |
| 2 | moeq 3681 | . . . . . . 7 ⊢ ∃*𝑧 𝑧 = 𝐶 | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∃*𝑧 𝑧 = 𝐶) |
| 4 | ovmpt4g.3 | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 5 | df-mpo 7395 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 6 | 4, 5 | eqtri 2753 | . . . . . 6 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
| 7 | 3, 6 | ovidi 7535 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝑧)) |
| 8 | eqeq2 2742 | . . . . 5 ⊢ (𝑧 = 𝐶 → ((𝑥𝐹𝑦) = 𝑧 ↔ (𝑥𝐹𝑦) = 𝐶)) | |
| 9 | 7, 8 | mpbidi 241 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) |
| 10 | 9 | exlimdv 1933 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (∃𝑧 𝑧 = 𝐶 → (𝑥𝐹𝑦) = 𝐶)) |
| 11 | 1, 10 | syl5 34 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐶 ∈ 𝑉 → (𝑥𝐹𝑦) = 𝐶)) |
| 12 | 11 | 3impia 1117 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2532 (class class class)co 7390 {coprab 7391 ∈ cmpo 7392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 |
| This theorem is referenced by: ovmpos 7540 ov2gf 7541 ovmpodxf 7542 ovmpodf 7548 ofmres 7966 fnmpoovd 8069 mapxpen 9113 pwfseqlem2 10619 pwfseqlem3 10620 fullfunc 17877 fthfunc 17878 prfcl 18171 curf1cl 18196 curfcl 18200 hofcl 18227 gsum2d2lem 19910 gsum2d2 19911 gsumcom2 19912 dprdval 19942 dprd2d2 19983 cnmpt21 23565 cnmpt2t 23567 cnmptcom 23572 cnmpt2k 23582 xkocnv 23708 suppovss 32611 fedgmullem1 33632 fedgmullem2 33633 fedgmul 33634 madjusmdetlem1 33824 madjusmdetlem3 33826 finxpreclem5 37390 sdclem2 37743 smflimlem1 46776 smflimlem2 46777 aovmpt4g 47206 ovmpordxf 48331 ovmpt4d 48857 iinfconstbas 49059 rescofuf 49086 |
| Copyright terms: Public domain | W3C validator |