MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfr2d Structured version   Visualization version   GIF version

Theorem ralxfr2d 5349
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.)
Hypotheses
Ref Expression
ralxfr2d.1 ((𝜑𝑦𝐶) → 𝐴𝑉)
ralxfr2d.2 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
ralxfr2d.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralxfr2d (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ralxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝑉)
2 elisset 2810 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
31, 2syl 17 . . 3 ((𝜑𝑦𝐶) → ∃𝑥 𝑥 = 𝐴)
4 ralxfr2d.2 . . . . . . . 8 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
54biimprd 248 . . . . . . 7 (𝜑 → (∃𝑦𝐶 𝑥 = 𝐴𝑥𝐵))
6 r19.23v 3156 . . . . . . 7 (∀𝑦𝐶 (𝑥 = 𝐴𝑥𝐵) ↔ (∃𝑦𝐶 𝑥 = 𝐴𝑥𝐵))
75, 6sylibr 234 . . . . . 6 (𝜑 → ∀𝑦𝐶 (𝑥 = 𝐴𝑥𝐵))
87r19.21bi 3221 . . . . 5 ((𝜑𝑦𝐶) → (𝑥 = 𝐴𝑥𝐵))
9 eleq1 2816 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
108, 9mpbidi 241 . . . 4 ((𝜑𝑦𝐶) → (𝑥 = 𝐴𝐴𝐵))
1110exlimdv 1933 . . 3 ((𝜑𝑦𝐶) → (∃𝑥 𝑥 = 𝐴𝐴𝐵))
123, 11mpd 15 . 2 ((𝜑𝑦𝐶) → 𝐴𝐵)
134biimpa 476 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
14 ralxfr2d.3 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
1512, 13, 14ralxfrd 5347 1 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054
This theorem is referenced by:  rexxfr2d  5350  ralrn  7022  ralima  7173  ralimaOLD  7176  cnrest2  23171  cnprest2  23175  connsuba  23305  subislly  23366  trfbas2  23728  trfil2  23772  flimrest  23868  fclsrest  23909  tsmssubm  24028  metucn  24457  ist0cld  33800  extoimad  44137
  Copyright terms: Public domain W3C validator