![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralxfr2d | Structured version Visualization version GIF version |
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) |
Ref | Expression |
---|---|
ralxfr2d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
ralxfr2d.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) |
ralxfr2d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralxfr2d | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr2d.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | |
2 | elisset 2807 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) |
4 | ralxfr2d.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) | |
5 | 4 | biimprd 247 | . . . . . . 7 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
6 | r19.23v 3172 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
7 | 5, 6 | sylibr 233 | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
8 | 7 | r19.21bi 3238 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) |
9 | eleq1 2813 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
10 | 8, 9 | mpbidi 240 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
11 | 10 | exlimdv 1928 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) |
12 | 3, 11 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) |
13 | 4 | biimpa 475 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
14 | ralxfr2d.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
15 | 12, 13, 14 | ralxfrd 5408 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 |
This theorem is referenced by: rexxfr2d 5411 ralrn 7097 ralima 7250 cnrest2 23234 cnprest2 23238 connsuba 23368 subislly 23429 trfbas2 23791 trfil2 23835 flimrest 23931 fclsrest 23972 tsmssubm 24091 metucn 24524 ist0cld 33565 extoimad 43736 |
Copyright terms: Public domain | W3C validator |