MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralxfr2d Structured version   Visualization version   GIF version

Theorem ralxfr2d 5408
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.)
Hypotheses
Ref Expression
ralxfr2d.1 ((𝜑𝑦𝐶) → 𝐴𝑉)
ralxfr2d.2 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
ralxfr2d.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralxfr2d (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem ralxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝑉)
2 elisset 2815 . . . 4 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
31, 2syl 17 . . 3 ((𝜑𝑦𝐶) → ∃𝑥 𝑥 = 𝐴)
4 ralxfr2d.2 . . . . . . . 8 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
54biimprd 247 . . . . . . 7 (𝜑 → (∃𝑦𝐶 𝑥 = 𝐴𝑥𝐵))
6 r19.23v 3182 . . . . . . 7 (∀𝑦𝐶 (𝑥 = 𝐴𝑥𝐵) ↔ (∃𝑦𝐶 𝑥 = 𝐴𝑥𝐵))
75, 6sylibr 233 . . . . . 6 (𝜑 → ∀𝑦𝐶 (𝑥 = 𝐴𝑥𝐵))
87r19.21bi 3248 . . . . 5 ((𝜑𝑦𝐶) → (𝑥 = 𝐴𝑥𝐵))
9 eleq1 2821 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
108, 9mpbidi 240 . . . 4 ((𝜑𝑦𝐶) → (𝑥 = 𝐴𝐴𝐵))
1110exlimdv 1936 . . 3 ((𝜑𝑦𝐶) → (∃𝑥 𝑥 = 𝐴𝐴𝐵))
123, 11mpd 15 . 2 ((𝜑𝑦𝐶) → 𝐴𝐵)
134biimpa 477 . 2 ((𝜑𝑥𝐵) → ∃𝑦𝐶 𝑥 = 𝐴)
14 ralxfr2d.3 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
1512, 13, 14ralxfrd 5406 1 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3061  wrex 3070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071
This theorem is referenced by:  rexxfr2d  5409  ralrn  7089  ralima  7242  cnrest2  22797  cnprest2  22801  connsuba  22931  subislly  22992  trfbas2  23354  trfil2  23398  flimrest  23494  fclsrest  23535  tsmssubm  23654  metucn  24087  ist0cld  32882  extoimad  42998
  Copyright terms: Public domain W3C validator