|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralxfr2d | Structured version Visualization version GIF version | ||
| Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| ralxfr2d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | 
| ralxfr2d.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) | 
| ralxfr2d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| ralxfr2d | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralxfr2d.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | |
| 2 | elisset 2822 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃𝑥 𝑥 = 𝐴) | 
| 4 | ralxfr2d.2 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) | |
| 5 | 4 | biimprd 248 | . . . . . . 7 ⊢ (𝜑 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 6 | r19.23v 3182 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵) ↔ (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
| 7 | 5, 6 | sylibr 234 | . . . . . 6 ⊢ (𝜑 → ∀𝑦 ∈ 𝐶 (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 8 | 7 | r19.21bi 3250 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | 
| 9 | eleq1 2828 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 10 | 8, 9 | mpbidi 241 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | 
| 11 | 10 | exlimdv 1932 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → (∃𝑥 𝑥 = 𝐴 → 𝐴 ∈ 𝐵)) | 
| 12 | 3, 11 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝐵) | 
| 13 | 4 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | 
| 14 | ralxfr2d.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 15 | 12, 13, 14 | ralxfrd 5407 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: rexxfr2d 5410 ralrn 7107 ralima 7258 ralimaOLD 7261 cnrest2 23295 cnprest2 23299 connsuba 23429 subislly 23490 trfbas2 23852 trfil2 23896 flimrest 23992 fclsrest 24033 tsmssubm 24152 metucn 24585 ist0cld 33833 extoimad 44182 | 
| Copyright terms: Public domain | W3C validator |