Proof of Theorem bnj1304
| Step | Hyp | Ref
| Expression |
| 1 | | notnotb 315 |
. . . 4
⊢
(∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ¬ ∀𝑥(𝜒 ∨ ¬ 𝜒)) |
| 2 | | notnotb 315 |
. . . . . . . 8
⊢ (𝜒 ↔ ¬ ¬ 𝜒) |
| 3 | 2 | anbi2i 623 |
. . . . . . 7
⊢ ((¬
𝜒 ∧ 𝜒) ↔ (¬ 𝜒 ∧ ¬ ¬ 𝜒)) |
| 4 | 3 | exbii 1848 |
. . . . . 6
⊢
(∃𝑥(¬
𝜒 ∧ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ ¬ ¬ 𝜒)) |
| 5 | | ioran 985 |
. . . . . . 7
⊢ (¬
(𝜒 ∨ ¬ 𝜒) ↔ (¬ 𝜒 ∧ ¬ ¬ 𝜒)) |
| 6 | 5 | exbii 1848 |
. . . . . 6
⊢
(∃𝑥 ¬
(𝜒 ∨ ¬ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ ¬ ¬ 𝜒)) |
| 7 | | exnal 1827 |
. . . . . 6
⊢
(∃𝑥 ¬
(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜒 ∨ ¬ 𝜒)) |
| 8 | 4, 6, 7 | 3bitr2ri 300 |
. . . . 5
⊢ (¬
∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ 𝜒)) |
| 9 | 8 | notbii 320 |
. . . 4
⊢ (¬
¬ ∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∃𝑥(¬ 𝜒 ∧ 𝜒)) |
| 10 | | exancom 1861 |
. . . . 5
⊢
(∃𝑥(¬
𝜒 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ ¬ 𝜒)) |
| 11 | 10 | notbii 320 |
. . . 4
⊢ (¬
∃𝑥(¬ 𝜒 ∧ 𝜒) ↔ ¬ ∃𝑥(𝜒 ∧ ¬ 𝜒)) |
| 12 | 1, 9, 11 | 3bitri 297 |
. . 3
⊢
(∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∃𝑥(𝜒 ∧ ¬ 𝜒)) |
| 13 | | exmid 894 |
. . 3
⊢ (𝜒 ∨ ¬ 𝜒) |
| 14 | 12, 13 | mpgbi 1798 |
. 2
⊢ ¬
∃𝑥(𝜒 ∧ ¬ 𝜒) |
| 15 | | bnj1304.1 |
. . 3
⊢ (𝜑 → ∃𝑥𝜓) |
| 16 | | bnj1304.2 |
. . . 4
⊢ (𝜓 → 𝜒) |
| 17 | | bnj1304.3 |
. . . 4
⊢ (𝜓 → ¬ 𝜒) |
| 18 | 16, 17 | jca 511 |
. . 3
⊢ (𝜓 → (𝜒 ∧ ¬ 𝜒)) |
| 19 | 15, 18 | bnj593 34781 |
. 2
⊢ (𝜑 → ∃𝑥(𝜒 ∧ ¬ 𝜒)) |
| 20 | 14, 19 | mto 197 |
1
⊢ ¬
𝜑 |