Proof of Theorem bnj1304
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | notnotb 315 | . . . 4
⊢
(∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ¬ ∀𝑥(𝜒 ∨ ¬ 𝜒)) | 
| 2 |  | notnotb 315 | . . . . . . . 8
⊢ (𝜒 ↔ ¬ ¬ 𝜒) | 
| 3 | 2 | anbi2i 623 | . . . . . . 7
⊢ ((¬
𝜒 ∧ 𝜒) ↔ (¬ 𝜒 ∧ ¬ ¬ 𝜒)) | 
| 4 | 3 | exbii 1847 | . . . . . 6
⊢
(∃𝑥(¬
𝜒 ∧ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ ¬ ¬ 𝜒)) | 
| 5 |  | ioran 985 | . . . . . . 7
⊢ (¬
(𝜒 ∨ ¬ 𝜒) ↔ (¬ 𝜒 ∧ ¬ ¬ 𝜒)) | 
| 6 | 5 | exbii 1847 | . . . . . 6
⊢
(∃𝑥 ¬
(𝜒 ∨ ¬ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ ¬ ¬ 𝜒)) | 
| 7 |  | exnal 1826 | . . . . . 6
⊢
(∃𝑥 ¬
(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∀𝑥(𝜒 ∨ ¬ 𝜒)) | 
| 8 | 4, 6, 7 | 3bitr2ri 300 | . . . . 5
⊢ (¬
∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ∃𝑥(¬ 𝜒 ∧ 𝜒)) | 
| 9 | 8 | notbii 320 | . . . 4
⊢ (¬
¬ ∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∃𝑥(¬ 𝜒 ∧ 𝜒)) | 
| 10 |  | exancom 1860 | . . . . 5
⊢
(∃𝑥(¬
𝜒 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ ¬ 𝜒)) | 
| 11 | 10 | notbii 320 | . . . 4
⊢ (¬
∃𝑥(¬ 𝜒 ∧ 𝜒) ↔ ¬ ∃𝑥(𝜒 ∧ ¬ 𝜒)) | 
| 12 | 1, 9, 11 | 3bitri 297 | . . 3
⊢
(∀𝑥(𝜒 ∨ ¬ 𝜒) ↔ ¬ ∃𝑥(𝜒 ∧ ¬ 𝜒)) | 
| 13 |  | exmid 894 | . . 3
⊢ (𝜒 ∨ ¬ 𝜒) | 
| 14 | 12, 13 | mpgbi 1797 | . 2
⊢  ¬
∃𝑥(𝜒 ∧ ¬ 𝜒) | 
| 15 |  | bnj1304.1 | . . 3
⊢ (𝜑 → ∃𝑥𝜓) | 
| 16 |  | bnj1304.2 | . . . 4
⊢ (𝜓 → 𝜒) | 
| 17 |  | bnj1304.3 | . . . 4
⊢ (𝜓 → ¬ 𝜒) | 
| 18 | 16, 17 | jca 511 | . . 3
⊢ (𝜓 → (𝜒 ∧ ¬ 𝜒)) | 
| 19 | 15, 18 | bnj593 34760 | . 2
⊢ (𝜑 → ∃𝑥(𝜒 ∧ ¬ 𝜒)) | 
| 20 | 14, 19 | mto 197 | 1
⊢  ¬
𝜑 |