MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12dvaOLD Structured version   Visualization version   GIF version

Theorem mpteq12dvaOLD 5228
Description: Obsolete version of mpteq12dva 5227 as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dvaOLD (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dvaOLD
StepHypRef Expression
1 mpteq12dv.1 . . 3 (𝜑𝐴 = 𝐶)
21alrimiv 1922 . 2 (𝜑 → ∀𝑥 𝐴 = 𝐶)
3 mpteq12dva.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
43ralrimiva 3138 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐷)
5 mpteq12f 5226 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
62, 4, 5syl2anc 583 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1531   = wceq 1533  wcel 2098  wral 3053  cmpt 5221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-opab 5201  df-mpt 5222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator