Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq12dvaOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq12dva 5158 as of 11-Nov-2024. (Contributed by Mario Carneiro, 26-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
mpteq12dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
mpteq12dvaOLD | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12dv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
2 | 1 | alrimiv 1935 | . 2 ⊢ (𝜑 → ∀𝑥 𝐴 = 𝐶) |
3 | mpteq12dva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
4 | 3 | ralrimiva 3108 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) |
5 | mpteq12f 5157 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
6 | 2, 4, 5 | syl2anc 587 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1541 = wceq 1543 ∈ wcel 2112 ∀wral 3064 ↦ cmpt 5152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2177 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-opab 5133 df-mpt 5153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |