Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq12f | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12f | ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 2156 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 𝐴 = 𝐶 | |
2 | nfra1 3131 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 = 𝐷 | |
3 | 1, 2 | nfan 1906 | . . 3 ⊢ Ⅎ𝑥(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) |
4 | nfv 1921 | . . 3 ⊢ Ⅎ𝑦(∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) | |
5 | rspa 3119 | . . . . . 6 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
6 | 5 | eqeq2d 2749 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 = 𝐷 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
7 | 6 | pm5.32da 582 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐷 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
8 | sp 2184 | . . . . . 6 ⊢ (∀𝑥 𝐴 = 𝐶 → 𝐴 = 𝐶) | |
9 | 8 | eleq2d 2818 | . . . . 5 ⊢ (∀𝑥 𝐴 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
10 | 9 | anbi1d 633 | . . . 4 ⊢ (∀𝑥 𝐴 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
11 | 7, 10 | sylan9bbr 514 | . . 3 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
12 | 3, 4, 11 | opabbid 5095 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
13 | df-mpt 5111 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
14 | df-mpt 5111 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
15 | 12, 13, 14 | 3eqtr4g 2798 | 1 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∀wal 1540 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {copab 5092 ↦ cmpt 5110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-opab 5093 df-mpt 5111 |
This theorem is referenced by: mpteq12dva 5114 mpteq12 5117 mpteq2ia 5121 mpteq2da 5124 esumeq12dvaf 31569 refsum2cnlem1 42118 mpteq1df 42317 mpteq12da 42324 smfsupmpt 43887 smfinflem 43889 smfinfmpt 43891 |
Copyright terms: Public domain | W3C validator |