MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12dva Structured version   Visualization version   GIF version

Theorem mpteq12dva 5255
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2141, ax-12 2178. (Revised by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dva (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dva
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12dva.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
21eqeq2d 2751 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
32pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
4 mpteq12dv.1 . . . . . 6 (𝜑𝐴 = 𝐶)
54eleq2d 2830 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝐶))
65anbi1d 630 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
73, 6bitrd 279 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
87opabbidv 5232 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
9 df-mpt 5250 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
10 df-mpt 5250 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
118, 9, 103eqtr4g 2805 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {copab 5228  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-opab 5229  df-mpt 5250
This theorem is referenced by:  mpteq12dv  5257  mpteq2dva  5266  pfxmpt  14726  reps  14818  repswccat  14834  cidpropd  17768  monpropd  17798  fucpropd  18047  curfpropd  18303  hofpropd  18337  yonffthlem  18352  ofco2  22478  pmatcollpw3fi1lem1  22813  rrxnm  25444  ushgredgedg  29264  ushgredgedgloop  29266  cshw1s2  32927  gsumpart  33038  gsumhashmul  33040  cycpm2tr  33112  sgnsv  33153  extdg1id  33676  ofcfval  34062  ccatmulgnn0dir  34519  signstf0  34545  curunc  37562  cncfiooicc  45815  dvcosax  45847  fourierdlem74  46101  fourierdlem75  46102  fourierdlem93  46120  smfsupxr  46737  smflimsuplem8  46748
  Copyright terms: Public domain W3C validator