| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12dva | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dva.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
| 2 | 1 | eqeq2d 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
| 4 | mpteq12dv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 5 | 4 | eleq2d 2815 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 7 | 3, 6 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 8 | 7 | opabbidv 5176 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
| 9 | df-mpt 5192 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 10 | df-mpt 5192 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
| 11 | 8, 9, 10 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5172 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-mpt 5192 |
| This theorem is referenced by: mpteq12dv 5197 mpteq2dva 5203 pfxmpt 14650 reps 14742 repswccat 14758 cidpropd 17678 monpropd 17706 fucpropd 17949 curfpropd 18201 hofpropd 18235 yonffthlem 18250 ofco2 22345 pmatcollpw3fi1lem1 22680 rrxnm 25298 ushgredgedg 29163 ushgredgedgloop 29165 cshw1s2 32889 gsumpart 33004 gsumhashmul 33008 gsumwrd2dccat 33014 cycpm2tr 33083 sgnsv 33124 extdg1id 33668 ofcfval 34095 ccatmulgnn0dir 34540 signstf0 34566 curunc 37603 cncfiooicc 45899 dvcosax 45931 fourierdlem74 46185 fourierdlem75 46186 fourierdlem93 46204 smfsupxr 46821 smflimsuplem8 46832 lmdpropd 49650 cmdpropd 49651 |
| Copyright terms: Public domain | W3C validator |