MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12dva Structured version   Visualization version   GIF version

Theorem mpteq12dva 5159
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2139, ax-12 2173. (Revised by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dva (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dva
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12dva.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
21eqeq2d 2749 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
32pm5.32da 578 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
4 mpteq12dv.1 . . . . . 6 (𝜑𝐴 = 𝐶)
54eleq2d 2824 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝐶))
65anbi1d 629 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
73, 6bitrd 278 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
87opabbidv 5136 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
9 df-mpt 5154 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
10 df-mpt 5154 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
118, 9, 103eqtr4g 2804 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {copab 5132  cmpt 5153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-opab 5133  df-mpt 5154
This theorem is referenced by:  mpteq12dv  5161  mpteq2dva  5170  pfxmpt  14319  reps  14411  repswccat  14427  cidpropd  17336  monpropd  17366  fucpropd  17611  curfpropd  17867  hofpropd  17901  yonffthlem  17916  ofco2  21508  pmatcollpw3fi1lem1  21843  rrxnm  24460  ushgredgedg  27499  ushgredgedgloop  27501  cshw1s2  31134  gsumpart  31217  gsumhashmul  31218  cycpm2tr  31288  sgnsv  31329  extdg1id  31640  ofcfval  31966  ccatmulgnn0dir  32421  signstf0  32447  curunc  35686  cncfiooicc  43325  dvcosax  43357  fourierdlem74  43611  fourierdlem75  43612  fourierdlem93  43630  smfsupxr  44236  smflimsuplem8  44247
  Copyright terms: Public domain W3C validator