MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12dva Structured version   Visualization version   GIF version

Theorem mpteq12dva 5168
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2141, ax-12 2175. (Revised by SN, 11-Nov-2024.)
Hypotheses
Ref Expression
mpteq12dv.1 (𝜑𝐴 = 𝐶)
mpteq12dva.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
Assertion
Ref Expression
mpteq12dva (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12dva
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mpteq12dva.2 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 = 𝐷)
21eqeq2d 2751 . . . . 5 ((𝜑𝑥𝐴) → (𝑦 = 𝐵𝑦 = 𝐷))
32pm5.32da 579 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐴𝑦 = 𝐷)))
4 mpteq12dv.1 . . . . . 6 (𝜑𝐴 = 𝐶)
54eleq2d 2826 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝐶))
65anbi1d 630 . . . 4 (𝜑 → ((𝑥𝐴𝑦 = 𝐷) ↔ (𝑥𝐶𝑦 = 𝐷)))
73, 6bitrd 278 . . 3 (𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐷)))
87opabbidv 5145 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)})
9 df-mpt 5163 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
10 df-mpt 5163 . 2 (𝑥𝐶𝐷) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐷)}
118, 9, 103eqtr4g 2805 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {copab 5141  cmpt 5162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-opab 5142  df-mpt 5163
This theorem is referenced by:  mpteq12dv  5170  mpteq2dva  5179  pfxmpt  14389  reps  14481  repswccat  14497  cidpropd  17417  monpropd  17447  fucpropd  17693  curfpropd  17949  hofpropd  17983  yonffthlem  17998  ofco2  21598  pmatcollpw3fi1lem1  21933  rrxnm  24553  ushgredgedg  27594  ushgredgedgloop  27596  cshw1s2  31228  gsumpart  31311  gsumhashmul  31312  cycpm2tr  31382  sgnsv  31423  extdg1id  31734  ofcfval  32062  ccatmulgnn0dir  32517  signstf0  32543  curunc  35755  cncfiooicc  43406  dvcosax  43438  fourierdlem74  43692  fourierdlem75  43693  fourierdlem93  43711  smfsupxr  44317  smflimsuplem8  44328
  Copyright terms: Public domain W3C validator