| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12dva | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2144, ax-12 2180. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dva.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
| 2 | 1 | eqeq2d 2742 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
| 4 | mpteq12dv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 5 | 4 | eleq2d 2817 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 7 | 3, 6 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 8 | 7 | opabbidv 5157 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
| 9 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 10 | df-mpt 5173 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
| 11 | 8, 9, 10 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {copab 5153 ↦ cmpt 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5154 df-mpt 5173 |
| This theorem is referenced by: mpteq12dv 5178 mpteq2dva 5184 pfxmpt 14583 reps 14674 repswccat 14690 cidpropd 17613 monpropd 17641 fucpropd 17884 curfpropd 18136 hofpropd 18170 yonffthlem 18185 ofco2 22364 pmatcollpw3fi1lem1 22699 rrxnm 25316 ushgredgedg 29205 ushgredgedgloop 29207 cshw1s2 32936 gsumpart 33032 gsumhashmul 33036 gsumwrd2dccat 33042 cycpm2tr 33083 sgnsv 33124 extdg1id 33674 ofcfval 34106 ccatmulgnn0dir 34550 signstf0 34576 curunc 37641 cncfiooicc 45931 dvcosax 45963 fourierdlem74 46217 fourierdlem75 46218 fourierdlem93 46236 smfsupxr 46853 smflimsuplem8 46864 lmdpropd 49688 cmdpropd 49689 |
| Copyright terms: Public domain | W3C validator |