| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12dva | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2146, ax-12 2182. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dva.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
| 2 | 1 | eqeq2d 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
| 4 | mpteq12dv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 5 | 4 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 7 | 3, 6 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 8 | 7 | opabbidv 5159 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
| 9 | df-mpt 5175 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 10 | df-mpt 5175 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
| 11 | 8, 9, 10 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {copab 5155 ↦ cmpt 5174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5156 df-mpt 5175 |
| This theorem is referenced by: mpteq12dv 5180 mpteq2dva 5186 pfxmpt 14588 reps 14679 repswccat 14695 cidpropd 17618 monpropd 17646 fucpropd 17889 curfpropd 18141 hofpropd 18175 yonffthlem 18190 ofco2 22367 pmatcollpw3fi1lem1 22702 rrxnm 25319 ushgredgedg 29209 ushgredgedgloop 29211 cshw1s2 32948 gsumpart 33044 gsumhashmul 33048 gsumwrd2dccat 33054 cycpm2tr 33095 sgnsv 33136 extdg1id 33700 ofcfval 34132 ccatmulgnn0dir 34576 signstf0 34602 curunc 37662 cncfiooicc 46016 dvcosax 46048 fourierdlem74 46302 fourierdlem75 46303 fourierdlem93 46321 smfsupxr 46938 smflimsuplem8 46949 lmdpropd 49782 cmdpropd 49783 |
| Copyright terms: Public domain | W3C validator |