| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12dva | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove dependency on ax-10 2142, ax-12 2178. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq12dv.1 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| mpteq12dva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| mpteq12dva | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12dva.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐷) | |
| 2 | 1 | eqeq2d 2747 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 = 𝐵 ↔ 𝑦 = 𝐷)) |
| 3 | 2 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷))) |
| 4 | mpteq12dv.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 = 𝐶) | |
| 5 | 4 | eleq2d 2821 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐶)) |
| 6 | 5 | anbi1d 631 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 7 | 3, 6 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷))) |
| 8 | 7 | opabbidv 5190 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)}) |
| 9 | df-mpt 5207 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 10 | df-mpt 5207 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐶 ∧ 𝑦 = 𝐷)} | |
| 11 | 8, 9, 10 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {copab 5186 ↦ cmpt 5206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-opab 5187 df-mpt 5207 |
| This theorem is referenced by: mpteq12dv 5212 mpteq2dva 5219 pfxmpt 14701 reps 14793 repswccat 14809 cidpropd 17727 monpropd 17755 fucpropd 17998 curfpropd 18250 hofpropd 18284 yonffthlem 18299 ofco2 22394 pmatcollpw3fi1lem1 22729 rrxnm 25348 ushgredgedg 29213 ushgredgedgloop 29215 cshw1s2 32941 gsumpart 33056 gsumhashmul 33060 gsumwrd2dccat 33066 cycpm2tr 33135 sgnsv 33176 extdg1id 33712 ofcfval 34134 ccatmulgnn0dir 34579 signstf0 34605 curunc 37631 cncfiooicc 45890 dvcosax 45922 fourierdlem74 46176 fourierdlem75 46177 fourierdlem93 46195 smfsupxr 46812 smflimsuplem8 46823 |
| Copyright terms: Public domain | W3C validator |