MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1OLD Structured version   Visualization version   GIF version

Theorem mpteq1OLD 5216
Description: Obsolete version of mpteq1 5215 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mpteq1OLD (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1OLD
StepHypRef Expression
1 eqidd 2735 . . 3 (𝑥𝐴𝐶 = 𝐶)
21rgen 3052 . 2 𝑥𝐴 𝐶 = 𝐶
3 mpteq12 5214 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐶) → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
42, 3mpan2 691 1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  cmpt 5205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-opab 5186  df-mpt 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator