Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq1 5163 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq1OLD | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 = 𝐶) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
3 | mpteq12 5162 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
4 | 2, 3 | mpan2 687 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |