Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of mpteq1 5180 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mpteq1OLD | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 = 𝐶) | |
2 | 1 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
3 | mpteq12 5179 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
4 | 2, 3 | mpan2 688 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ↦ cmpt 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-opab 5150 df-mpt 5171 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |