MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1OLD Structured version   Visualization version   GIF version

Theorem mpteq1OLD 5168
Description: Obsolete version of mpteq1 5167 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mpteq1OLD (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1OLD
StepHypRef Expression
1 eqidd 2739 . . 3 (𝑥𝐴𝐶 = 𝐶)
21rgen 3074 . 2 𝑥𝐴 𝐶 = 𝐶
3 mpteq12 5166 . 2 ((𝐴 = 𝐵 ∧ ∀𝑥𝐴 𝐶 = 𝐶) → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
42, 3mpan2 688 1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  cmpt 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-opab 5137  df-mpt 5158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator