| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12 | ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶) | |
| 2 | mpteq12f 5192 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∀wral 3044 ↦ cmpt 5188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-opab 5170 df-mpt 5189 |
| This theorem is referenced by: mpteqb 6987 fmptcof 7102 mapxpen 9107 prodeq2w 15876 prdsdsval2 17447 prdsdsval3 17448 ablfac2 20021 mdetunilem9 22507 mdetmul 22510 xkocnv 23701 voliun 25455 itgeq1fOLD 25673 itgeq2 25679 iblcnlem 25690 bddiblnc 25743 esumeq2 34026 esumcvg 34076 dvtan 37664 |
| Copyright terms: Public domain | W3C validator |