MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12 Structured version   Visualization version   GIF version

Theorem mpteq12 5258
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12
StepHypRef Expression
1 ax-5 1909 . 2 (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶)
2 mpteq12f 5254 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
31, 2sylan 579 1 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wral 3067  cmpt 5249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-opab 5229  df-mpt 5250
This theorem is referenced by:  mpteq1OLD  5260  mpteqb  7048  fmptcof  7164  mapxpen  9209  prodeq2w  15958  prdsdsval2  17544  prdsdsval3  17545  ablfac2  20133  mdetunilem9  22647  mdetmul  22650  xkocnv  23843  voliun  25608  itgeq1fOLD  25827  itgeq2  25833  iblcnlem  25844  bddiblnc  25897  esumeq2  34000  esumcvg  34050  dvtan  37630
  Copyright terms: Public domain W3C validator