Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12 | ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1914 | . 2 ⊢ (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶) | |
2 | mpteq12f 5158 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
3 | 1, 2 | sylan 579 | 1 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∀wral 3063 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: mpteq1OLD 5164 mpteqb 6876 fmptcof 6984 mapxpen 8879 prodeq2w 15550 prdsdsval2 17112 prdsdsval3 17113 ablfac2 19607 mdetunilem9 21677 mdetmul 21680 xkocnv 22873 voliun 24623 itgeq1f 24841 itgeq2 24847 iblcnlem 24858 bddiblnc 24911 esumeq2 31904 esumcvg 31954 dvtan 35754 |
Copyright terms: Public domain | W3C validator |