![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12 | ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1953 | . 2 ⊢ (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶) | |
2 | mpteq12f 4967 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
3 | 1, 2 | sylan 575 | 1 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1599 = wceq 1601 ∀wral 3089 ↦ cmpt 4965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-ral 3094 df-opab 4949 df-mpt 4966 |
This theorem is referenced by: mpteq1 4972 mpteqb 6560 fmptcof 6662 mapxpen 8414 prodeq2w 15045 prdsdsval2 16530 prdsdsval3 16531 ablfac2 18875 mdetunilem9 20831 mdetmul 20834 xkocnv 22026 voliun 23758 itgeq1f 23975 itgeq2 23981 iblcnlem 23992 esumeq2 30696 esumcvg 30746 dvtan 34069 bddiblnc 34089 |
Copyright terms: Public domain | W3C validator |