MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12 Structured version   Visualization version   GIF version

Theorem mpteq12 4971
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12
StepHypRef Expression
1 ax-5 1953 . 2 (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶)
2 mpteq12f 4967 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
31, 2sylan 575 1 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wal 1599   = wceq 1601  wral 3089  cmpt 4965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-ral 3094  df-opab 4949  df-mpt 4966
This theorem is referenced by:  mpteq1  4972  mpteqb  6560  fmptcof  6662  mapxpen  8414  prodeq2w  15045  prdsdsval2  16530  prdsdsval3  16531  ablfac2  18875  mdetunilem9  20831  mdetmul  20834  xkocnv  22026  voliun  23758  itgeq1f  23975  itgeq2  23981  iblcnlem  23992  esumeq2  30696  esumcvg  30746  dvtan  34069  bddiblnc  34089
  Copyright terms: Public domain W3C validator