| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12 | ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶) | |
| 2 | mpteq12f 5205 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) | |
| 3 | 1, 2 | sylan 580 | 1 ⊢ ((𝐴 = 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐷) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∀wral 3051 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-opab 5182 df-mpt 5202 |
| This theorem is referenced by: mpteqb 7005 fmptcof 7120 mapxpen 9157 prodeq2w 15926 prdsdsval2 17498 prdsdsval3 17499 ablfac2 20072 mdetunilem9 22558 mdetmul 22561 xkocnv 23752 voliun 25507 itgeq1fOLD 25725 itgeq2 25731 iblcnlem 25742 bddiblnc 25795 esumeq2 34067 esumcvg 34117 dvtan 37694 |
| Copyright terms: Public domain | W3C validator |