MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12 Structured version   Visualization version   GIF version

Theorem mpteq12 5167
Description: An equality theorem for the maps-to notation. (Contributed by NM, 16-Dec-2013.)
Assertion
Ref Expression
mpteq12 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem mpteq12
StepHypRef Expression
1 ax-5 1914 . 2 (𝐴 = 𝐶 → ∀𝑥 𝐴 = 𝐶)
2 mpteq12f 5163 . 2 ((∀𝑥 𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
31, 2sylan 580 1 ((𝐴 = 𝐶 ∧ ∀𝑥𝐴 𝐵 = 𝐷) → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wral 3065  cmpt 5158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-opab 5138  df-mpt 5159
This theorem is referenced by:  mpteq1OLD  5169  mpteqb  6903  fmptcof  7011  mapxpen  8939  prodeq2w  15631  prdsdsval2  17204  prdsdsval3  17205  ablfac2  19701  mdetunilem9  21778  mdetmul  21781  xkocnv  22974  voliun  24727  itgeq1f  24945  itgeq2  24951  iblcnlem  24962  bddiblnc  25015  esumeq2  32013  esumcvg  32063  dvtan  35836
  Copyright terms: Public domain W3C validator