| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq2iaOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mpteq2ia 5245 as of 11-Nov-2024. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| mpteq2iaOLD | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | ax-gen 1795 | . 2 ⊢ ∀𝑥 𝐴 = 𝐴 |
| 3 | mpteq2ia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
| 4 | 3 | rgen 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶 |
| 5 | mpteq12f 5230 | . 2 ⊢ ((∀𝑥 𝐴 = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 6 | 2, 4, 5 | mp2an 692 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ↦ cmpt 5225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-opab 5206 df-mpt 5226 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |