Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq2ia | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq2ia.1 | ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
mpteq2ia | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq2ia.1 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝐵 = 𝐶) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | mpteq2dva 5170 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
4 | 3 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
Copyright terms: Public domain | W3C validator |