MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nulmo Structured version   Visualization version   GIF version

Theorem nulmo 2708
Description: There exists at most one empty set. With either axnul 5241 or axnulALT 5240 or ax-nul 5242, this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 4297. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) (Proof shortened by Wolf Lammen, 26-Apr-2023.)
Assertion
Ref Expression
nulmo ∃*𝑥𝑦 ¬ 𝑦𝑥
Distinct variable group:   𝑥,𝑦

Proof of Theorem nulmo
StepHypRef Expression
1 nfv 1915 . . 3 𝑥
21axextmo 2707 . 2 ∃*𝑥𝑦(𝑦𝑥 ↔ ⊥)
3 nbfal 1556 . . . 4 𝑦𝑥 ↔ (𝑦𝑥 ↔ ⊥))
43albii 1820 . . 3 (∀𝑦 ¬ 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥 ↔ ⊥))
54mobii 2543 . 2 (∃*𝑥𝑦 ¬ 𝑦𝑥 ↔ ∃*𝑥𝑦(𝑦𝑥 ↔ ⊥))
62, 5mpbir 231 1 ∃*𝑥𝑦 ¬ 𝑦𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1539  wfal 1553  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535
This theorem is referenced by:  eu0  43623
  Copyright terms: Public domain W3C validator