Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nulmo | Structured version Visualization version GIF version |
Description: There exists at most one empty set. With either axnul 5229 or axnulALT 5228 or ax-nul 5230, this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 4277. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) (Proof shortened by Wolf Lammen, 26-Apr-2023.) |
Ref | Expression |
---|---|
nulmo | ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . . 3 ⊢ Ⅎ𝑥⊥ | |
2 | 1 | axextmo 2713 | . 2 ⊢ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
3 | nbfal 1554 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
4 | 3 | albii 1822 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
5 | 4 | mobii 2548 | . 2 ⊢ (∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
6 | 2, 5 | mpbir 230 | 1 ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∀wal 1537 ⊥wfal 1551 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 |
This theorem is referenced by: eu0 41127 |
Copyright terms: Public domain | W3C validator |