| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nulmo | Structured version Visualization version GIF version | ||
| Description: There exists at most one empty set. With either axnul 5280 or axnulALT 5279 or ax-nul 5281, this proves that there exists a unique empty set. In practice, once the language of classes is available, we use the stronger characterization among classes eq0 4330. (Contributed by NM, 22-Dec-2007.) Use the at-most-one quantifier. (Revised by BJ, 17-Sep-2022.) (Proof shortened by Wolf Lammen, 26-Apr-2023.) |
| Ref | Expression |
|---|---|
| nulmo | ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑥⊥ | |
| 2 | 1 | axextmo 2712 | . 2 ⊢ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥) |
| 3 | nbfal 1555 | . . . 4 ⊢ (¬ 𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑥 ↔ ⊥)) | |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 5 | 4 | mobii 2548 | . 2 ⊢ (∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∃*𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ ⊥)) |
| 6 | 2, 5 | mpbir 231 | 1 ⊢ ∃*𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1538 ⊥wfal 1552 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 |
| This theorem is referenced by: eu0 43511 |
| Copyright terms: Public domain | W3C validator |