| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version | ||
| Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2804, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 3 | df-clab 2709 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 4 | sbv 2089 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 7 | nbfal 1555 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 9 | 7, 8 | sylbir 235 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 10 | 6, 9 | sylbi 217 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 11 | 2, 10 | sylg 1823 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 12 | dfnul4 4301 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 13 | 12 | eqeq2i 2743 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 14 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2065 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-dif 3920 df-nul 4300 |
| This theorem is referenced by: rexn0 4477 ral0 4479 ralf0 4480 raaan 4483 raaanv 4484 raaan2 4487 iinrab2 5037 riinrab 5051 reusv2lem2 5357 cnvpo 6263 dffi3 9389 brdom3 10488 dedekind 11344 fimaxre2 12135 fiminre2 12138 mgm0 18590 sgrp0 18661 efgs1 19672 opnnei 23014 bddiblnc 25750 axcontlem12 28909 nbgr0edg 29291 prcliscplgr 29348 cplgr0v 29361 0vtxrgr 29511 0vconngr 30129 frgr1v 30207 ubthlem1 30806 rdgssun 37373 matunitlindf 37619 mbfresfi 37667 blbnd 37788 rrnequiv 37836 upbdrech2 45313 limsupubuz 45718 stoweidlem9 46014 fourierdlem31 46143 upwordnul 46885 upwordsing 46889 nelsubclem 49060 0funcg2 49077 |
| Copyright terms: Public domain | W3C validator |