Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version |
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
3 | df-clab 2716 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
4 | sbv 2091 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
6 | 5 | bibi2i 338 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
7 | nbfal 1554 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
9 | 7, 8 | sylbir 234 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
11 | 2, 10 | sylg 1825 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
12 | dfnul4 4258 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
13 | 12 | eqeq2i 2751 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
14 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ⊥wfal 1551 [wsb 2067 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ral 3069 df-dif 3890 df-nul 4257 |
This theorem is referenced by: rexn0 4441 ral0 4443 ralf0 4444 ralidmOLD 4446 raaan 4451 raaanv 4452 raaan2 4455 iinrab2 4999 riinrab 5013 reusv2lem2 5322 cnvpo 6190 dffi3 9190 brdom3 10284 dedekind 11138 fimaxre2 11920 fiminre2 11923 mgm0 18340 sgrp0 18382 efgs1 19341 opnnei 22271 bddiblnc 25006 axcontlem12 27343 nbgr0edg 27724 prcliscplgr 27781 cplgr0v 27794 0vtxrgr 27943 0vconngr 28557 frgr1v 28635 ubthlem1 29232 rdgssun 35549 matunitlindf 35775 mbfresfi 35823 blbnd 35945 rrnequiv 35993 upbdrech2 42847 limsupubuz 43254 stoweidlem9 43550 fourierdlem31 43679 upwordnul 46515 upwordsing 46519 |
Copyright terms: Public domain | W3C validator |