| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version | ||
| Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2803, ax-8 2111. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2722 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 3 | df-clab 2708 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 4 | sbv 2089 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 7 | nbfal 1555 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 9 | 7, 8 | sylbir 235 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 10 | 6, 9 | sylbi 217 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 11 | 2, 10 | sylg 1823 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 12 | dfnul4 4288 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 13 | 12 | eqeq2i 2742 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 14 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2065 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∅c0 4286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-dif 3908 df-nul 4287 |
| This theorem is referenced by: rexn0 4464 ral0 4466 ralf0 4467 raaan 4470 raaanv 4471 raaan2 4474 iinrab2 5022 riinrab 5036 reusv2lem2 5341 cnvpo 6239 dffi3 9340 brdom3 10441 dedekind 11297 fimaxre2 12088 fiminre2 12091 mgm0 18548 sgrp0 18619 efgs1 19632 opnnei 23023 bddiblnc 25759 axcontlem12 28938 nbgr0edg 29320 prcliscplgr 29377 cplgr0v 29390 0vtxrgr 29540 0vconngr 30155 frgr1v 30233 ubthlem1 30832 rdgssun 37351 matunitlindf 37597 mbfresfi 37645 blbnd 37766 rrnequiv 37814 upbdrech2 45290 limsupubuz 45695 stoweidlem9 45991 fourierdlem31 46120 upwordnul 46862 upwordsing 46866 nelsubclem 49053 0funcg2 49070 |
| Copyright terms: Public domain | W3C validator |