| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version | ||
| Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2728 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
| 3 | df-clab 2714 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
| 4 | sbv 2088 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
| 6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
| 7 | nbfal 1555 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 9 | 7, 8 | sylbir 235 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 10 | 6, 9 | sylbi 217 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 11 | 2, 10 | sylg 1823 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 12 | dfnul4 4310 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 13 | 12 | eqeq2i 2748 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 14 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ⊥wfal 1552 [wsb 2064 ∈ wcel 2108 {cab 2713 ∀wral 3051 ∅c0 4308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-ral 3052 df-dif 3929 df-nul 4309 |
| This theorem is referenced by: rexn0 4486 ral0 4488 ralf0 4489 raaan 4492 raaanv 4493 raaan2 4496 iinrab2 5046 riinrab 5060 reusv2lem2 5369 cnvpo 6276 dffi3 9441 brdom3 10540 dedekind 11396 fimaxre2 12185 fiminre2 12188 mgm0 18632 sgrp0 18703 efgs1 19714 opnnei 23056 bddiblnc 25793 axcontlem12 28900 nbgr0edg 29282 prcliscplgr 29339 cplgr0v 29352 0vtxrgr 29502 0vconngr 30120 frgr1v 30198 ubthlem1 30797 rdgssun 37342 matunitlindf 37588 mbfresfi 37636 blbnd 37757 rrnequiv 37805 upbdrech2 45285 limsupubuz 45690 stoweidlem9 45986 fourierdlem31 46115 upwordnul 46857 upwordsing 46861 nelsubclem 48982 0funcg2 48997 |
| Copyright terms: Public domain | W3C validator |