| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version | ||
| Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2808, ax-8 2115. (Revised by GG, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . . . 5 ⊢ (𝑦 = 𝑥 → (⊥ ↔ ⊥)) | |
| 2 | 1 | eqabbw 2806 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ ⊥)) |
| 4 | nbfal 1556 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
| 5 | pm2.21 123 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 6 | 4, 5 | sylbir 235 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
| 7 | 3, 6 | sylg 1824 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
| 8 | dfnul4 4284 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
| 9 | 8 | eqeq2i 2746 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
| 10 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 11 | 7, 9, 10 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ⊥wfal 1553 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∅c0 4282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ral 3049 df-dif 3901 df-nul 4283 |
| This theorem is referenced by: rexn0 4460 ral0 4462 ralf0 4463 raaan 4466 raaanv 4467 raaan2 4470 iinrab2 5020 riinrab 5034 reusv2lem2 5339 cnvpo 6239 dffi3 9322 brdom3 10426 dedekind 11283 fimaxre2 12074 fiminre2 12077 nulchn 18527 mgm0 18566 sgrp0 18637 efgs1 19649 opnnei 23036 bddiblnc 25771 axcontlem12 28955 nbgr0edg 29337 prcliscplgr 29394 cplgr0v 29407 0vtxrgr 29557 0vconngr 30175 frgr1v 30253 ubthlem1 30852 rdgssun 37443 matunitlindf 37678 mbfresfi 37726 blbnd 37847 rrnequiv 37895 upbdrech2 45433 limsupubuz 45835 stoweidlem9 46131 fourierdlem31 46260 chnerlem1 47004 nelsubclem 49192 0funcg2 49209 |
| Copyright terms: Public domain | W3C validator |