MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rzal Structured version   Visualization version   GIF version

Theorem rzal 4439
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2816, ax-8 2108. (Revised by Gino Giotto, 2-Sep-2024.)
Assertion
Ref Expression
rzal (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rzal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . . . 4 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
21biimpi 215 . . 3 (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
3 df-clab 2716 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
4 sbv 2091 . . . . . 6 ([𝑥 / 𝑦]⊥ ↔ ⊥)
53, 4bitri 274 . . . . 5 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
65bibi2i 338 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
7 nbfal 1554 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
8 pm2.21 123 . . . . 5 𝑥𝐴 → (𝑥𝐴𝜑))
97, 8sylbir 234 . . . 4 ((𝑥𝐴 ↔ ⊥) → (𝑥𝐴𝜑))
106, 9sylbi 216 . . 3 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥𝐴𝜑))
112, 10sylg 1825 . 2 (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥𝐴𝜑))
12 dfnul4 4258 . . 3 ∅ = {𝑦 ∣ ⊥}
1312eqeq2i 2751 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
14 df-ral 3069 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
1511, 13, 143imtr4i 292 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537   = wceq 1539  wfal 1551  [wsb 2067  wcel 2106  {cab 2715  wral 3064  c0 4256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-ral 3069  df-dif 3890  df-nul 4257
This theorem is referenced by:  rexn0  4441  ral0  4443  ralf0  4444  ralidmOLD  4446  raaan  4451  raaanv  4452  raaan2  4455  iinrab2  4999  riinrab  5013  reusv2lem2  5322  cnvpo  6190  dffi3  9190  brdom3  10284  dedekind  11138  fimaxre2  11920  fiminre2  11923  mgm0  18340  sgrp0  18382  efgs1  19341  opnnei  22271  bddiblnc  25006  axcontlem12  27343  nbgr0edg  27724  prcliscplgr  27781  cplgr0v  27794  0vtxrgr  27943  0vconngr  28557  frgr1v  28635  ubthlem1  29232  rdgssun  35549  matunitlindf  35775  mbfresfi  35823  blbnd  35945  rrnequiv  35993  upbdrech2  42847  limsupubuz  43254  stoweidlem9  43550  fourierdlem31  43679  upwordnul  46515  upwordsing  46519
  Copyright terms: Public domain W3C validator