![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version |
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2811, ax-8 2109. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2726 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
3 | df-clab 2711 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
4 | sbv 2092 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
6 | 5 | bibi2i 338 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
7 | nbfal 1557 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
9 | 7, 8 | sylbir 234 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
10 | 6, 9 | sylbi 216 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
11 | 2, 10 | sylg 1826 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
12 | dfnul4 4325 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
13 | 12 | eqeq2i 2746 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
14 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 ⊥wfal 1554 [wsb 2068 ∈ wcel 2107 {cab 2710 ∀wral 3062 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-ral 3063 df-dif 3952 df-nul 4324 |
This theorem is referenced by: rexn0 4511 ral0 4513 ralf0 4514 ralidmOLD 4516 raaan 4521 raaanv 4522 raaan2 4525 iinrab2 5074 riinrab 5088 reusv2lem2 5398 cnvpo 6287 dffi3 9426 brdom3 10523 dedekind 11377 fimaxre2 12159 fiminre2 12162 mgm0 18575 sgrp0 18618 efgs1 19603 opnnei 22624 bddiblnc 25359 axcontlem12 28233 nbgr0edg 28614 prcliscplgr 28671 cplgr0v 28684 0vtxrgr 28833 0vconngr 29446 frgr1v 29524 ubthlem1 30123 rdgssun 36259 matunitlindf 36486 mbfresfi 36534 blbnd 36655 rrnequiv 36703 upbdrech2 44018 limsupubuz 44429 stoweidlem9 44725 fourierdlem31 44854 upwordnul 45594 upwordsing 45598 |
Copyright terms: Public domain | W3C validator |