![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rzal | Structured version Visualization version GIF version |
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2819, ax-8 2110. (Revised by GG, 2-Sep-2024.) |
Ref | Expression |
---|---|
rzal | ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . . . 4 ⊢ (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) | |
2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥})) |
3 | df-clab 2718 | . . . . . 6 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥) | |
4 | sbv 2088 | . . . . . 6 ⊢ ([𝑥 / 𝑦]⊥ ↔ ⊥) | |
5 | 3, 4 | bitri 275 | . . . . 5 ⊢ (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥) |
6 | 5 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) |
7 | nbfal 1552 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ↔ ⊥)) | |
8 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) | |
9 | 7, 8 | sylbir 235 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ ⊥) → (𝑥 ∈ 𝐴 → 𝜑)) |
10 | 6, 9 | sylbi 217 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥 ∈ 𝐴 → 𝜑)) |
11 | 2, 10 | sylg 1821 | . 2 ⊢ (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
12 | dfnul4 4354 | . . 3 ⊢ ∅ = {𝑦 ∣ ⊥} | |
13 | 12 | eqeq2i 2753 | . 2 ⊢ (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥}) |
14 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
15 | 11, 13, 14 | 3imtr4i 292 | 1 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ⊥wfal 1549 [wsb 2064 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∅c0 4352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-dif 3979 df-nul 4353 |
This theorem is referenced by: rexn0 4534 ral0 4536 ralf0 4537 raaan 4540 raaanv 4541 raaan2 4544 iinrab2 5093 riinrab 5107 reusv2lem2 5417 cnvpo 6318 dffi3 9500 brdom3 10597 dedekind 11453 fimaxre2 12240 fiminre2 12243 mgm0 18694 sgrp0 18765 efgs1 19777 opnnei 23149 bddiblnc 25897 axcontlem12 29008 nbgr0edg 29392 prcliscplgr 29449 cplgr0v 29462 0vtxrgr 29612 0vconngr 30225 frgr1v 30303 ubthlem1 30902 rdgssun 37344 matunitlindf 37578 mbfresfi 37626 blbnd 37747 rrnequiv 37795 upbdrech2 45223 limsupubuz 45634 stoweidlem9 45930 fourierdlem31 46059 upwordnul 46799 upwordsing 46803 |
Copyright terms: Public domain | W3C validator |