MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rzal Structured version   Visualization version   GIF version

Theorem rzal 4484
Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid df-clel 2809, ax-8 2110. (Revised by GG, 2-Sep-2024.)
Assertion
Ref Expression
rzal (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rzal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2728 . . . 4 (𝐴 = {𝑦 ∣ ⊥} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
21biimpi 216 . . 3 (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}))
3 df-clab 2714 . . . . . 6 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ [𝑥 / 𝑦]⊥)
4 sbv 2088 . . . . . 6 ([𝑥 / 𝑦]⊥ ↔ ⊥)
53, 4bitri 275 . . . . 5 (𝑥 ∈ {𝑦 ∣ ⊥} ↔ ⊥)
65bibi2i 337 . . . 4 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) ↔ (𝑥𝐴 ↔ ⊥))
7 nbfal 1555 . . . . 5 𝑥𝐴 ↔ (𝑥𝐴 ↔ ⊥))
8 pm2.21 123 . . . . 5 𝑥𝐴 → (𝑥𝐴𝜑))
97, 8sylbir 235 . . . 4 ((𝑥𝐴 ↔ ⊥) → (𝑥𝐴𝜑))
106, 9sylbi 217 . . 3 ((𝑥𝐴𝑥 ∈ {𝑦 ∣ ⊥}) → (𝑥𝐴𝜑))
112, 10sylg 1823 . 2 (𝐴 = {𝑦 ∣ ⊥} → ∀𝑥(𝑥𝐴𝜑))
12 dfnul4 4310 . . 3 ∅ = {𝑦 ∣ ⊥}
1312eqeq2i 2748 . 2 (𝐴 = ∅ ↔ 𝐴 = {𝑦 ∣ ⊥})
14 df-ral 3052 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
1511, 13, 143imtr4i 292 1 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1538   = wceq 1540  wfal 1552  [wsb 2064  wcel 2108  {cab 2713  wral 3051  c0 4308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-ral 3052  df-dif 3929  df-nul 4309
This theorem is referenced by:  rexn0  4486  ral0  4488  ralf0  4489  raaan  4492  raaanv  4493  raaan2  4496  iinrab2  5046  riinrab  5060  reusv2lem2  5369  cnvpo  6276  dffi3  9441  brdom3  10540  dedekind  11396  fimaxre2  12185  fiminre2  12188  mgm0  18632  sgrp0  18703  efgs1  19714  opnnei  23056  bddiblnc  25793  axcontlem12  28900  nbgr0edg  29282  prcliscplgr  29339  cplgr0v  29352  0vtxrgr  29502  0vconngr  30120  frgr1v  30198  ubthlem1  30797  rdgssun  37342  matunitlindf  37588  mbfresfi  37636  blbnd  37757  rrnequiv  37805  upbdrech2  45285  limsupubuz  45690  stoweidlem9  45986  fourierdlem31  46115  upwordnul  46857  upwordsing  46861  nelsubclem  48982  0funcg2  48997
  Copyright terms: Public domain W3C validator