Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2 48449
Description: Implication 2 for lindslininds 48450. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦   𝑦,𝑅   𝑥,𝐵   𝑥,𝑀   𝑅,𝑠   𝑓,𝑉,𝑥   𝑥,𝑍

Proof of Theorem lindslinindsimp2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ⊆ (Base‘𝑀))
2 elpwg 4556 . . . . 5 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
32ad2antrr 726 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
41, 3mpbird 257 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ∈ 𝒫 (Base‘𝑀))
5 simplr 768 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑀 ∈ LMod)
6 ssdifss 4093 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
76adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
8 difexg 5271 . . . . . . . . . . . 12 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
98ad2antrr 726 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ V)
10 elpwg 4556 . . . . . . . . . . 11 ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
119, 10syl 17 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
127, 11mpbird 257 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
13 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
1413lspeqlco 48425 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1514eleq2d 2814 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
1615bicomd 223 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
175, 12, 16syl2anc 584 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1817notbid 318 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
19 lindslinind.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑀)
20 lindslinind.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
2113, 19, 20lcoval 48398 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
22 lindslinind.0 . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
2322eqcomi 2738 . . . . . . . . . . . . . . 15 (0g𝑅) = 0
2423breq2i 5103 . . . . . . . . . . . . . 14 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
2524anbi1i 624 . . . . . . . . . . . . 13 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2625rexbii 3076 . . . . . . . . . . . 12 (∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2726anbi2i 623 . . . . . . . . . . 11 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
2821, 27bitrdi 287 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
295, 12, 28syl2anc 584 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3029notbid 318 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
31 ianor 983 . . . . . . . . 9 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
32 ralnex 3055 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
33 ianor 983 . . . . . . . . . . . 12 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3433ralbii 3075 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3532, 34bitr3i 277 . . . . . . . . . 10 (¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3635orbi2i 912 . . . . . . . . 9 ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3731, 36bitri 275 . . . . . . . 8 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3830, 37bitrdi 287 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3918, 38bitrd 279 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
40392ralbidv 3193 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
41 simpllr 775 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
42 eldifi 4084 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4342adantl 481 . . . . . . . . . . . 12 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
4443adantl 481 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
45 ssel2 3932 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑠𝑆) → 𝑠 ∈ (Base‘𝑀))
4645ad2ant2lr 748 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ (Base‘𝑀))
47 eqid 2729 . . . . . . . . . . . 12 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4813, 19, 47, 20lmodvscl 20799 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑦𝐵𝑠 ∈ (Base‘𝑀)) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
4941, 44, 46, 48syl3anc 1373 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
5049notnotd 144 . . . . . . . . 9 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
51 nbfal 1555 . . . . . . . . 9 (¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5250, 51sylib 218 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5352orbi1d 916 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
54532ralbidva 3191 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
55 r19.32v 3162 . . . . . . . . 9 (∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5655ralbii 3075 . . . . . . . 8 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
57 r19.32v 3162 . . . . . . . 8 (∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5856, 57bitri 275 . . . . . . 7 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
59 falim 1557 . . . . . . . . 9 (⊥ → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
60 sneq 4589 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → {𝑠} = {𝑥})
6160difeq2d 4079 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (𝑆 ∖ {𝑠}) = (𝑆 ∖ {𝑥}))
6261oveq2d 7369 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → (𝐵m (𝑆 ∖ {𝑠})) = (𝐵m (𝑆 ∖ {𝑥})))
63 oveq2 7361 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑦( ·𝑠𝑀)𝑠) = (𝑦( ·𝑠𝑀)𝑥))
6461oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))
6563, 64eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6665notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6766orbi2d 915 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6862, 67raleqbidv 3310 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6968ralbidv 3152 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑥 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
7069rspcva 3577 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
71 lindslinind.z . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (0g𝑀)
7219, 20, 22, 71lindslinindsimp2lem5 48448 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
7372expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
7473com14 96 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7570, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7675ex 412 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 )))))
7776pm2.43a 54 . . . . . . . . . . . . . . 15 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7877com14 96 . . . . . . . . . . . . . 14 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 ))))
7978imp 406 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8079expdimp 452 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8180ralrimdv 3127 . . . . . . . . . . 11 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8281ralrimiva 3121 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8382expcom 413 . . . . . . . . 9 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8459, 83jaoi 857 . . . . . . . 8 ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8584com12 32 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8658, 85biimtrid 242 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8754, 86sylbid 240 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8840, 87sylbid 240 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8988impr 454 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
904, 89jca 511 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
9190ex 412 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wfal 1552  wcel 2109  wral 3044  wrex 3053  Vcvv 3438  cdif 3902  wss 3905  𝒫 cpw 4553  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  m cmap 8760   finSupp cfsupp 9270  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  LModclmod 20781  LSpanclspn 20892   linC clinc 48390   LinCo clinco 48391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893  df-linc 48392  df-lco 48393
This theorem is referenced by:  lindslininds  48450
  Copyright terms: Public domain W3C validator