Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2 47643
Description: Implication 2 for lindslininds 47644. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalarβ€˜π‘€)
lindslinind.b 𝐡 = (Baseβ€˜π‘…)
lindslinind.0 0 = (0gβ€˜π‘…)
lindslinind.z 𝑍 = (0gβ€˜π‘€)
Assertion
Ref Expression
lindslinindsimp2 ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) β†’ ((𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠}))) β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ∧ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))))
Distinct variable groups:   𝐡,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,π‘₯   𝑆,𝑓,𝑠,π‘₯,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,π‘₯,𝑦   𝑦,𝑅   π‘₯,𝐡   π‘₯,𝑀   𝑅,𝑠   𝑓,𝑉,π‘₯   π‘₯,𝑍

Proof of Theorem lindslinindsimp2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . 4 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))) β†’ 𝑆 βŠ† (Baseβ€˜π‘€))
2 elpwg 4606 . . . . 5 (𝑆 ∈ 𝑉 β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ↔ 𝑆 βŠ† (Baseβ€˜π‘€)))
32ad2antrr 724 . . . 4 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))) β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ↔ 𝑆 βŠ† (Baseβ€˜π‘€)))
41, 3mpbird 256 . . 3 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))) β†’ 𝑆 ∈ 𝒫 (Baseβ€˜π‘€))
5 simplr 767 . . . . . . . . 9 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ 𝑀 ∈ LMod)
6 ssdifss 4133 . . . . . . . . . . 11 (𝑆 βŠ† (Baseβ€˜π‘€) β†’ (𝑆 βˆ– {𝑠}) βŠ† (Baseβ€˜π‘€))
76adantl 480 . . . . . . . . . 10 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (𝑆 βˆ– {𝑠}) βŠ† (Baseβ€˜π‘€))
8 difexg 5329 . . . . . . . . . . . 12 (𝑆 ∈ 𝑉 β†’ (𝑆 βˆ– {𝑠}) ∈ V)
98ad2antrr 724 . . . . . . . . . . 11 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (𝑆 βˆ– {𝑠}) ∈ V)
10 elpwg 4606 . . . . . . . . . . 11 ((𝑆 βˆ– {𝑠}) ∈ V β†’ ((𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€) ↔ (𝑆 βˆ– {𝑠}) βŠ† (Baseβ€˜π‘€)))
119, 10syl 17 . . . . . . . . . 10 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ ((𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€) ↔ (𝑆 βˆ– {𝑠}) βŠ† (Baseβ€˜π‘€)))
127, 11mpbird 256 . . . . . . . . 9 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€))
13 eqid 2725 . . . . . . . . . . . 12 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
1413lspeqlco 47619 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝑀 LinCo (𝑆 βˆ– {𝑠})) = ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))
1514eleq2d 2811 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠}))))
1615bicomd 222 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) ↔ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠}))))
175, 12, 16syl2anc 582 . . . . . . . 8 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) ↔ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠}))))
1817notbid 317 . . . . . . 7 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) ↔ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠}))))
19 lindslinind.r . . . . . . . . . . . 12 𝑅 = (Scalarβ€˜π‘€)
20 lindslinind.b . . . . . . . . . . . 12 𝐡 = (Baseβ€˜π‘…)
2113, 19, 20lcoval 47592 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp (0gβ€˜π‘…) ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
22 lindslinind.0 . . . . . . . . . . . . . . . 16 0 = (0gβ€˜π‘…)
2322eqcomi 2734 . . . . . . . . . . . . . . 15 (0gβ€˜π‘…) = 0
2423breq2i 5156 . . . . . . . . . . . . . 14 (𝑔 finSupp (0gβ€˜π‘…) ↔ 𝑔 finSupp 0 )
2524anbi1i 622 . . . . . . . . . . . . 13 ((𝑔 finSupp (0gβ€˜π‘…) ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
2625rexbii 3084 . . . . . . . . . . . 12 (βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp (0gβ€˜π‘…) ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
2726anbi2i 621 . . . . . . . . . . 11 (((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp (0gβ€˜π‘…) ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
2821, 27bitrdi 286 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 βˆ– {𝑠}) ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
295, 12, 28syl2anc 582 . . . . . . . . 9 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
3029notbid 317 . . . . . . . 8 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ Β¬ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
31 ianor 979 . . . . . . . . 9 (Β¬ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ Β¬ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
32 ralnex 3062 . . . . . . . . . . 11 (βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠})) Β¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ Β¬ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
33 ianor 979 . . . . . . . . . . . 12 (Β¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ (Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
3433ralbii 3083 . . . . . . . . . . 11 (βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠})) Β¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
3532, 34bitr3i 276 . . . . . . . . . 10 (Β¬ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))
3635orbi2i 910 . . . . . . . . 9 ((Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ Β¬ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
3731, 36bitri 274 . . . . . . . 8 (Β¬ ((𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
3830, 37bitrdi 286 . . . . . . 7 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (𝑀 LinCo (𝑆 βˆ– {𝑠})) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
3918, 38bitrd 278 . . . . . 6 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
40392ralbidv 3209 . . . . 5 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) ↔ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
41 simpllr 774 . . . . . . . . . . 11 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ 𝑀 ∈ LMod)
42 eldifi 4124 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐡 βˆ– { 0 }) β†’ 𝑦 ∈ 𝐡)
4342adantl 480 . . . . . . . . . . . 12 ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 })) β†’ 𝑦 ∈ 𝐡)
4443adantl 480 . . . . . . . . . . 11 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ 𝑦 ∈ 𝐡)
45 ssel2 3972 . . . . . . . . . . . 12 ((𝑆 βŠ† (Baseβ€˜π‘€) ∧ 𝑠 ∈ 𝑆) β†’ 𝑠 ∈ (Baseβ€˜π‘€))
4645ad2ant2lr 746 . . . . . . . . . . 11 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ 𝑠 ∈ (Baseβ€˜π‘€))
47 eqid 2725 . . . . . . . . . . . 12 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
4813, 19, 47, 20lmodvscl 20765 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑦 ∈ 𝐡 ∧ 𝑠 ∈ (Baseβ€˜π‘€)) β†’ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€))
4941, 44, 46, 48syl3anc 1368 . . . . . . . . . 10 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€))
5049notnotd 144 . . . . . . . . 9 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ Β¬ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€))
51 nbfal 1548 . . . . . . . . 9 (Β¬ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ↔ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ↔ βŠ₯))
5250, 51sylib 217 . . . . . . . 8 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ↔ βŠ₯))
5352orbi1d 914 . . . . . . 7 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐡 βˆ– { 0 }))) β†’ ((Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
54532ralbidva 3207 . . . . . 6 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))))))
55 r19.32v 3182 . . . . . . . . 9 (βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (βŠ₯ ∨ βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
5655ralbii 3083 . . . . . . . 8 (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ βˆ€π‘  ∈ 𝑆 (βŠ₯ ∨ βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
57 r19.32v 3182 . . . . . . . 8 (βˆ€π‘  ∈ 𝑆 (βŠ₯ ∨ βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (βŠ₯ ∨ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
5856, 57bitri 274 . . . . . . 7 (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ↔ (βŠ₯ ∨ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))))
59 falim 1550 . . . . . . . . 9 (βŠ₯ β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
60 sneq 4639 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = π‘₯ β†’ {𝑠} = {π‘₯})
6160difeq2d 4119 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = π‘₯ β†’ (𝑆 βˆ– {𝑠}) = (𝑆 βˆ– {π‘₯}))
6261oveq2d 7433 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = π‘₯ β†’ (𝐡 ↑m (𝑆 βˆ– {𝑠})) = (𝐡 ↑m (𝑆 βˆ– {π‘₯})))
63 oveq2 7425 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = π‘₯ β†’ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑦( ·𝑠 β€˜π‘€)π‘₯))
6461oveq2d 7433 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = π‘₯ β†’ (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯})))
6563, 64eqeq12d 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = π‘₯ β†’ ((𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})) ↔ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))))
6665notbid 317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = π‘₯ β†’ (Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})) ↔ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))))
6766orbi2d 913 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = π‘₯ β†’ ((Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ (Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯})))))
6862, 67raleqbidv 3330 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = π‘₯ β†’ (βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯})))))
6968ralbidv 3168 . . . . . . . . . . . . . . . . . . 19 (𝑠 = π‘₯ β†’ (βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) ↔ βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯})))))
7069rspcva 3605 . . . . . . . . . . . . . . . . . 18 ((π‘₯ ∈ 𝑆 ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))))
71 lindslinind.z . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (0gβ€˜π‘€)
7219, 20, 22, 71lindslinindsimp2lem5 47642 . . . . . . . . . . . . . . . . . . . 20 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ π‘₯ ∈ 𝑆)) β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))) β†’ (π‘“β€˜π‘₯) = 0 )))
7372expr 455 . . . . . . . . . . . . . . . . . . 19 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (π‘₯ ∈ 𝑆 β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))) β†’ (π‘“β€˜π‘₯) = 0 ))))
7473com14 96 . . . . . . . . . . . . . . . . . 18 (βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {π‘₯}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)π‘₯) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {π‘₯}))) β†’ (π‘₯ ∈ 𝑆 β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (π‘“β€˜π‘₯) = 0 ))))
7570, 74syl 17 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ 𝑆 ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ (π‘₯ ∈ 𝑆 β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (π‘“β€˜π‘₯) = 0 ))))
7675ex 411 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ 𝑆 β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) β†’ (π‘₯ ∈ 𝑆 β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (π‘“β€˜π‘₯) = 0 )))))
7776pm2.43a 54 . . . . . . . . . . . . . . 15 (π‘₯ ∈ 𝑆 β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (π‘“β€˜π‘₯) = 0 ))))
7877com14 96 . . . . . . . . . . . . . 14 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (π‘₯ ∈ 𝑆 β†’ (π‘“β€˜π‘₯) = 0 ))))
7978imp 405 . . . . . . . . . . . . 13 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ ((𝑓 ∈ (𝐡 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍)) β†’ (π‘₯ ∈ 𝑆 β†’ (π‘“β€˜π‘₯) = 0 )))
8079expdimp 451 . . . . . . . . . . . 12 (((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ∧ 𝑓 ∈ (𝐡 ↑m 𝑆)) β†’ ((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ (π‘₯ ∈ 𝑆 β†’ (π‘“β€˜π‘₯) = 0 )))
8180ralrimdv 3142 . . . . . . . . . . 11 (((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) ∧ 𝑓 ∈ (𝐡 ↑m 𝑆)) β†’ ((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))
8281ralrimiva 3136 . . . . . . . . . 10 ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))
8382expcom 412 . . . . . . . . 9 (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠}))) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8459, 83jaoi 855 . . . . . . . 8 ((βŠ₯ ∨ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8584com12 32 . . . . . . 7 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ ((βŠ₯ ∨ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8658, 85biimtrid 241 . . . . . 6 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(βŠ₯ ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8754, 86sylbid 239 . . . . 5 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 })(Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ (Baseβ€˜π‘€) ∨ βˆ€π‘” ∈ (𝐡 ↑m (𝑆 βˆ– {𝑠}))(Β¬ 𝑔 finSupp 0 ∨ Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) = (𝑔( linC β€˜π‘€)(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8840, 87sylbid 239 . . . 4 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 βŠ† (Baseβ€˜π‘€)) β†’ (βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
8988impr 453 . . 3 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))) β†’ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))
904, 89jca 510 . 2 (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠})))) β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ∧ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 )))
9190ex 411 1 ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) β†’ ((𝑆 βŠ† (Baseβ€˜π‘€) ∧ βˆ€π‘  ∈ 𝑆 βˆ€π‘¦ ∈ (𝐡 βˆ– { 0 }) Β¬ (𝑦( ·𝑠 β€˜π‘€)𝑠) ∈ ((LSpanβ€˜π‘€)β€˜(𝑆 βˆ– {𝑠}))) β†’ (𝑆 ∈ 𝒫 (Baseβ€˜π‘€) ∧ βˆ€π‘“ ∈ (𝐡 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC β€˜π‘€)𝑆) = 𝑍) β†’ βˆ€π‘₯ ∈ 𝑆 (π‘“β€˜π‘₯) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533  βŠ₯wfal 1545   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  Vcvv 3463   βˆ– cdif 3942   βŠ† wss 3945  π’« cpw 4603  {csn 4629   class class class wbr 5148  β€˜cfv 6547  (class class class)co 7417   ↑m cmap 8843   finSupp cfsupp 9385  Basecbs 17179  Scalarcsca 17235   ·𝑠 cvsca 17236  0gc0g 17420  LModclmod 20747  LSpanclspn 20859   linC clinc 47584   LinCo clinco 47585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-om 7870  df-1st 7992  df-2nd 7993  df-supp 8164  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-fsupp 9386  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-0g 17422  df-gsum 17423  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18897  df-minusg 18898  df-sbg 18899  df-mulg 19028  df-subg 19082  df-ghm 19172  df-cntz 19272  df-cmn 19741  df-abl 19742  df-mgp 20079  df-rng 20097  df-ur 20126  df-ring 20179  df-lmod 20749  df-lss 20820  df-lsp 20860  df-linc 47586  df-lco 47587
This theorem is referenced by:  lindslininds  47644
  Copyright terms: Public domain W3C validator