| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprl 771 | . . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ⊆ (Base‘𝑀)) | 
| 2 |  | elpwg 4603 | . . . . 5
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) | 
| 3 | 2 | ad2antrr 726 | . . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) | 
| 4 | 1, 3 | mpbird 257 | . . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ∈ 𝒫 (Base‘𝑀)) | 
| 5 |  | simplr 769 | . . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑀 ∈ LMod) | 
| 6 |  | ssdifss 4140 | . . . . . . . . . . 11
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) | 
| 7 | 6 | adantl 481 | . . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) | 
| 8 |  | difexg 5329 | . . . . . . . . . . . 12
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑠}) ∈ V) | 
| 9 | 8 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ V) | 
| 10 |  | elpwg 4603 | . . . . . . . . . . 11
⊢ ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))) | 
| 11 | 9, 10 | syl 17 | . . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))) | 
| 12 | 7, 11 | mpbird 257 | . . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) | 
| 13 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 14 | 13 | lspeqlco 48356 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) | 
| 15 | 14 | eleq2d 2827 | . . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) | 
| 16 | 15 | bicomd 223 | . . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) | 
| 17 | 5, 12, 16 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) | 
| 18 | 17 | notbid 318 | . . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) | 
| 19 |  | lindslinind.r | . . . . . . . . . . . 12
⊢ 𝑅 = (Scalar‘𝑀) | 
| 20 |  | lindslinind.b | . . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) | 
| 21 | 13, 19, 20 | lcoval 48329 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 22 |  | lindslinind.0 | . . . . . . . . . . . . . . . 16
⊢  0 =
(0g‘𝑅) | 
| 23 | 22 | eqcomi 2746 | . . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = 0 | 
| 24 | 23 | breq2i 5151 | . . . . . . . . . . . . . 14
⊢ (𝑔 finSupp
(0g‘𝑅)
↔ 𝑔 finSupp 0
) | 
| 25 | 24 | anbi1i 624 | . . . . . . . . . . . . 13
⊢ ((𝑔 finSupp
(0g‘𝑅)
∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 26 | 25 | rexbii 3094 | . . . . . . . . . . . 12
⊢
(∃𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 27 | 26 | anbi2i 623 | . . . . . . . . . . 11
⊢ (((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 28 | 21, 27 | bitrdi 287 | . . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 29 | 5, 12, 28 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 30 | 29 | notbid 318 | . . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ¬ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 31 |  | ianor 984 | . . . . . . . . 9
⊢ (¬
((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 32 |  | ralnex 3072 | . . . . . . . . . . 11
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 33 |  | ianor 984 | . . . . . . . . . . . 12
⊢ (¬
(𝑔 finSupp 0 ∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 34 | 33 | ralbii 3093 | . . . . . . . . . . 11
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 35 | 32, 34 | bitr3i 277 | . . . . . . . . . 10
⊢ (¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) | 
| 36 | 35 | orbi2i 913 | . . . . . . . . 9
⊢ ((¬
(𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 37 | 31, 36 | bitri 275 | . . . . . . . 8
⊢ (¬
((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 38 | 30, 37 | bitrdi 287 | . . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 39 | 18, 38 | bitrd 279 | . . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 40 | 39 | 2ralbidv 3221 | . . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 41 |  | simpllr 776 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod) | 
| 42 |  | eldifi 4131 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) | 
| 43 | 42 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦 ∈ 𝐵) | 
| 44 | 43 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) | 
| 45 |  | ssel2 3978 | . . . . . . . . . . . 12
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ (Base‘𝑀)) | 
| 46 | 45 | ad2ant2lr 748 | . . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ (Base‘𝑀)) | 
| 47 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) | 
| 48 | 13, 19, 47, 20 | lmodvscl 20876 | . . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ (Base‘𝑀)) → (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀)) | 
| 49 | 41, 44, 46, 48 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀)) | 
| 50 | 49 | notnotd 144 | . . . . . . . . 9
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ¬
(𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀)) | 
| 51 |  | nbfal 1555 | . . . . . . . . 9
⊢ (¬
¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥)) | 
| 52 | 50, 51 | sylib 218 | . . . . . . . 8
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥)) | 
| 53 | 52 | orbi1d 917 | . . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 54 | 53 | 2ralbidva 3219 | . . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) | 
| 55 |  | r19.32v 3192 | . . . . . . . . 9
⊢
(∀𝑦 ∈
(𝐵 ∖ { 0 })(⊥
∨ ∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 56 | 55 | ralbii 3093 | . . . . . . . 8
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠 ∈ 𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 57 |  | r19.32v 3192 | . . . . . . . 8
⊢
(∀𝑠 ∈
𝑆 (⊥ ∨
∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 58 | 56, 57 | bitri 275 | . . . . . . 7
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) | 
| 59 |  | falim 1557 | . . . . . . . . 9
⊢ (⊥
→ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 60 |  | sneq 4636 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = 𝑥 → {𝑠} = {𝑥}) | 
| 61 | 60 | difeq2d 4126 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = 𝑥 → (𝑆 ∖ {𝑠}) = (𝑆 ∖ {𝑥})) | 
| 62 | 61 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 𝑥 → (𝐵 ↑m (𝑆 ∖ {𝑠})) = (𝐵 ↑m (𝑆 ∖ {𝑥}))) | 
| 63 |  | oveq2 7439 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑥 → (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑦( ·𝑠
‘𝑀)𝑥)) | 
| 64 | 61 | oveq2d 7447 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑥 → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) | 
| 65 | 63, 64 | eqeq12d 2753 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = 𝑥 → ((𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) | 
| 66 | 65 | notbid 318 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = 𝑥 → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠
‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) | 
| 67 | 66 | orbi2d 916 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 𝑥 → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) | 
| 68 | 62, 67 | raleqbidv 3346 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑥 → (∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) | 
| 69 | 68 | ralbidv 3178 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑥 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) | 
| 70 | 69 | rspcva 3620 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) | 
| 71 |  | lindslinind.z | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 = (0g‘𝑀) | 
| 72 | 19, 20, 22, 71 | lindslinindsimp2lem5 48379 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) | 
| 73 | 72 | expr 456 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 )))) | 
| 74 | 73 | com14 96 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(𝐵 ∖ { 0
})∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) | 
| 75 | 70, 74 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) | 
| 76 | 75 | ex 412 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 ))))) | 
| 77 | 76 | pm2.43a 54 | . . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) | 
| 78 | 77 | com14 96 | . . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 )))) | 
| 79 | 78 | imp 406 | . . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 ))) | 
| 80 | 79 | expdimp 452 | . . . . . . . . . . . 12
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 ))) | 
| 81 | 80 | ralrimdv 3152 | . . . . . . . . . . 11
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) | 
| 82 | 81 | ralrimiva 3146 | . . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) | 
| 83 | 82 | expcom 413 | . . . . . . . . 9
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 84 | 59, 83 | jaoi 858 | . . . . . . . 8
⊢ ((⊥
∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 85 | 84 | com12 32 | . . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 86 | 58, 85 | biimtrid 242 | . . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 87 | 54, 86 | sylbid 240 | . . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 88 | 40, 87 | sylbid 240 | . . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 89 | 88 | impr 454 | . . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) | 
| 90 | 4, 89 | jca 511 | . 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) | 
| 91 | 90 | ex 412 | 1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |