Step | Hyp | Ref
| Expression |
1 | | simprl 770 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ⊆ (Base‘𝑀)) |
2 | | elpwg 4497 |
. . . . 5
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
3 | 2 | ad2antrr 725 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
4 | 1, 3 | mpbird 260 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
5 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑀 ∈ LMod) |
6 | | ssdifss 4041 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
7 | 6 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)) |
8 | | difexg 5197 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑠}) ∈ V) |
9 | 8 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ V) |
10 | | elpwg 4497 |
. . . . . . . . . . 11
⊢ ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))) |
11 | 9, 10 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))) |
12 | 7, 11 | mpbird 260 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) |
13 | | eqid 2758 |
. . . . . . . . . . . 12
⊢
(Base‘𝑀) =
(Base‘𝑀) |
14 | 13 | lspeqlco 45213 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) |
15 | 14 | eleq2d 2837 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) |
16 | 15 | bicomd 226 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
17 | 5, 12, 16 | syl2anc 587 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
18 | 17 | notbid 321 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})))) |
19 | | lindslinind.r |
. . . . . . . . . . . 12
⊢ 𝑅 = (Scalar‘𝑀) |
20 | | lindslinind.b |
. . . . . . . . . . . 12
⊢ 𝐵 = (Base‘𝑅) |
21 | 13, 19, 20 | lcoval 45186 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
22 | | lindslinind.0 |
. . . . . . . . . . . . . . . 16
⊢ 0 =
(0g‘𝑅) |
23 | 22 | eqcomi 2767 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝑅) = 0 |
24 | 23 | breq2i 5040 |
. . . . . . . . . . . . . 14
⊢ (𝑔 finSupp
(0g‘𝑅)
↔ 𝑔 finSupp 0
) |
25 | 24 | anbi1i 626 |
. . . . . . . . . . . . 13
⊢ ((𝑔 finSupp
(0g‘𝑅)
∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
26 | 25 | rexbii 3175 |
. . . . . . . . . . . 12
⊢
(∃𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
27 | 26 | anbi2i 625 |
. . . . . . . . . . 11
⊢ (((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g‘𝑅) ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
28 | 21, 27 | bitrdi 290 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
29 | 5, 12, 28 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
30 | 29 | notbid 321 |
. . . . . . . 8
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ¬ ((𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
31 | | ianor 979 |
. . . . . . . . 9
⊢ (¬
((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
32 | | ralnex 3163 |
. . . . . . . . . . 11
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
33 | | ianor 979 |
. . . . . . . . . . . 12
⊢ (¬
(𝑔 finSupp 0 ∧ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
34 | 33 | ralbii 3097 |
. . . . . . . . . . 11
⊢
(∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
35 | 32, 34 | bitr3i 280 |
. . . . . . . . . 10
⊢ (¬
∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) |
36 | 35 | orbi2i 910 |
. . . . . . . . 9
⊢ ((¬
(𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
37 | 31, 36 | bitri 278 |
. . . . . . . 8
⊢ (¬
((𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
38 | 30, 37 | bitrdi 290 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
39 | 18, 38 | bitrd 282 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
40 | 39 | 2ralbidv 3128 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
41 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod) |
42 | | eldifi 4032 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦 ∈ 𝐵) |
43 | 42 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦 ∈ 𝐵) |
44 | 43 | adantl 485 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦 ∈ 𝐵) |
45 | | ssel2 3887 |
. . . . . . . . . . . 12
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑠 ∈ 𝑆) → 𝑠 ∈ (Base‘𝑀)) |
46 | 45 | ad2ant2lr 747 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ (Base‘𝑀)) |
47 | | eqid 2758 |
. . . . . . . . . . . 12
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
48 | 13, 19, 47, 20 | lmodvscl 19719 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝑦 ∈ 𝐵 ∧ 𝑠 ∈ (Base‘𝑀)) → (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀)) |
49 | 41, 44, 46, 48 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀)) |
50 | 49 | notnotd 146 |
. . . . . . . . 9
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ¬
(𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀)) |
51 | | nbfal 1553 |
. . . . . . . . 9
⊢ (¬
¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ (¬ (𝑦( ·𝑠
‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥)) |
52 | 50, 51 | sylib 221 |
. . . . . . . 8
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → (¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥)) |
53 | 52 | orbi1d 914 |
. . . . . . 7
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠 ∈ 𝑆 ∧ 𝑦 ∈ (𝐵 ∖ { 0 }))) → ((¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
54 | 53 | 2ralbidva 3127 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))) |
55 | | r19.32v 3259 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
(𝐵 ∖ { 0 })(⊥
∨ ∀𝑔 ∈
(𝐵 ↑m
(𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
56 | 55 | ralbii 3097 |
. . . . . . . 8
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠 ∈ 𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
57 | | r19.32v 3259 |
. . . . . . . 8
⊢
(∀𝑠 ∈
𝑆 (⊥ ∨
∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
58 | 56, 57 | bitri 278 |
. . . . . . 7
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))) |
59 | | falim 1555 |
. . . . . . . . 9
⊢ (⊥
→ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
60 | | sneq 4532 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = 𝑥 → {𝑠} = {𝑥}) |
61 | 60 | difeq2d 4028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = 𝑥 → (𝑆 ∖ {𝑠}) = (𝑆 ∖ {𝑥})) |
62 | 61 | oveq2d 7166 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 𝑥 → (𝐵 ↑m (𝑆 ∖ {𝑠})) = (𝐵 ↑m (𝑆 ∖ {𝑥}))) |
63 | | oveq2 7158 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑥 → (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑦( ·𝑠
‘𝑀)𝑥)) |
64 | 61 | oveq2d 7166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑠 = 𝑥 → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) |
65 | 63, 64 | eqeq12d 2774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑠 = 𝑥 → ((𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠
‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
66 | 65 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 = 𝑥 → (¬ (𝑦( ·𝑠
‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠
‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
67 | 66 | orbi2d 913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑠 = 𝑥 → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) |
68 | 62, 67 | raleqbidv 3319 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑠 = 𝑥 → (∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) |
69 | 68 | ralbidv 3126 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑠 = 𝑥 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))) |
70 | 69 | rspcva 3539 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
71 | | lindslinind.z |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 = (0g‘𝑀) |
72 | 19, 20, 22, 71 | lindslinindsimp2lem5 45236 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 ))) |
73 | 72 | expr 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓‘𝑥) = 0 )))) |
74 | 73 | com14 96 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(𝐵 ∖ { 0
})∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) |
75 | 70, 74 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑆 ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) |
76 | 75 | ex 416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (𝑥 ∈ 𝑆 → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 ))))) |
77 | 76 | pm2.43a 54 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑆 → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓‘𝑥) = 0 )))) |
78 | 77 | com14 96 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 )))) |
79 | 78 | imp 410 |
. . . . . . . . . . . . 13
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑓 ∈ (𝐵 ↑m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 ))) |
80 | 79 | expdimp 456 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) = 0 ))) |
81 | 80 | ralrimdv 3117 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵 ↑m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
82 | 81 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
83 | 82 | expcom 417 |
. . . . . . . . 9
⊢
(∀𝑠 ∈
𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
84 | 59, 83 | jaoi 854 |
. . . . . . . 8
⊢ ((⊥
∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
85 | 84 | com12 32 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((⊥ ∨ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
86 | 58, 85 | syl5bi 245 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨
∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
87 | 54, 86 | sylbid 243 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵 ↑m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
88 | 40, 87 | sylbid 243 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
89 | 88 | impr 458 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )) |
90 | 4, 89 | jca 515 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
91 | 90 | ex 416 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦(
·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵 ↑m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |