Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2 48192
Description: Implication 2 for lindslininds 48193. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦   𝑦,𝑅   𝑥,𝐵   𝑥,𝑀   𝑅,𝑠   𝑓,𝑉,𝑥   𝑥,𝑍

Proof of Theorem lindslinindsimp2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ⊆ (Base‘𝑀))
2 elpwg 4625 . . . . 5 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
32ad2antrr 725 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
41, 3mpbird 257 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ∈ 𝒫 (Base‘𝑀))
5 simplr 768 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑀 ∈ LMod)
6 ssdifss 4163 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
76adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
8 difexg 5347 . . . . . . . . . . . 12 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
98ad2antrr 725 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ V)
10 elpwg 4625 . . . . . . . . . . 11 ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
119, 10syl 17 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
127, 11mpbird 257 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
13 eqid 2740 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
1413lspeqlco 48168 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1514eleq2d 2830 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
1615bicomd 223 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
175, 12, 16syl2anc 583 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1817notbid 318 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
19 lindslinind.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑀)
20 lindslinind.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
2113, 19, 20lcoval 48141 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
22 lindslinind.0 . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
2322eqcomi 2749 . . . . . . . . . . . . . . 15 (0g𝑅) = 0
2423breq2i 5174 . . . . . . . . . . . . . 14 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
2524anbi1i 623 . . . . . . . . . . . . 13 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2625rexbii 3100 . . . . . . . . . . . 12 (∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2726anbi2i 622 . . . . . . . . . . 11 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
2821, 27bitrdi 287 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
295, 12, 28syl2anc 583 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3029notbid 318 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
31 ianor 982 . . . . . . . . 9 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
32 ralnex 3078 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
33 ianor 982 . . . . . . . . . . . 12 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3433ralbii 3099 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3532, 34bitr3i 277 . . . . . . . . . 10 (¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3635orbi2i 911 . . . . . . . . 9 ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3731, 36bitri 275 . . . . . . . 8 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3830, 37bitrdi 287 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3918, 38bitrd 279 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
40392ralbidv 3227 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
41 simpllr 775 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
42 eldifi 4154 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4342adantl 481 . . . . . . . . . . . 12 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
4443adantl 481 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
45 ssel2 4003 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑠𝑆) → 𝑠 ∈ (Base‘𝑀))
4645ad2ant2lr 747 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ (Base‘𝑀))
47 eqid 2740 . . . . . . . . . . . 12 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4813, 19, 47, 20lmodvscl 20898 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑦𝐵𝑠 ∈ (Base‘𝑀)) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
4941, 44, 46, 48syl3anc 1371 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
5049notnotd 144 . . . . . . . . 9 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
51 nbfal 1552 . . . . . . . . 9 (¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5250, 51sylib 218 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5352orbi1d 915 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
54532ralbidva 3225 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
55 r19.32v 3198 . . . . . . . . 9 (∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5655ralbii 3099 . . . . . . . 8 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
57 r19.32v 3198 . . . . . . . 8 (∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5856, 57bitri 275 . . . . . . 7 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
59 falim 1554 . . . . . . . . 9 (⊥ → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
60 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → {𝑠} = {𝑥})
6160difeq2d 4149 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (𝑆 ∖ {𝑠}) = (𝑆 ∖ {𝑥}))
6261oveq2d 7464 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → (𝐵m (𝑆 ∖ {𝑠})) = (𝐵m (𝑆 ∖ {𝑥})))
63 oveq2 7456 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑦( ·𝑠𝑀)𝑠) = (𝑦( ·𝑠𝑀)𝑥))
6461oveq2d 7464 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))
6563, 64eqeq12d 2756 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6665notbid 318 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6766orbi2d 914 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6862, 67raleqbidv 3354 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → (∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6968ralbidv 3184 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑥 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
7069rspcva 3633 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
71 lindslinind.z . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (0g𝑀)
7219, 20, 22, 71lindslinindsimp2lem5 48191 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
7372expr 456 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
7473com14 96 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7570, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7675ex 412 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 )))))
7776pm2.43a 54 . . . . . . . . . . . . . . 15 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7877com14 96 . . . . . . . . . . . . . 14 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 ))))
7978imp 406 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑓 ∈ (𝐵m 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8079expdimp 452 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8180ralrimdv 3158 . . . . . . . . . . 11 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵m 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8281ralrimiva 3152 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8382expcom 413 . . . . . . . . 9 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8459, 83jaoi 856 . . . . . . . 8 ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8584com12 32 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8658, 85biimtrid 242 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8754, 86sylbid 240 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵m (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8840, 87sylbid 240 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8988impr 454 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
904, 89jca 511 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
9190ex 412 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wfal 1549  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  LSpanclspn 20992   linC clinc 48133   LinCo clinco 48134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lsp 20993  df-linc 48135  df-lco 48136
This theorem is referenced by:  lindslininds  48193
  Copyright terms: Public domain W3C validator